初めて SPM シミュレータを使われる方に向けての

ソルバ毎 SPM シミュレータ計算事例

「SPM シミュレータ用途別機能紹介資料[Part5: 有機半導体の観察]」編

株式会社 Advanced Algorithm & Systems

2018.02.23

1 · 目次

[Part5: 有機半導体の観察]が提示する計算事例(1~20)は、用途別市場において https://www.aasri.jp/pub/spm/pdf/catalog/imagepamphlet/SPM_ApplicationField.pdf https://www.aasri.jp/pub/spm/SPM_simulator_application_examples.html 研究テーマでは、 有機半導体

用途別市場では、

用途区分 電子デバイス 有機EL

に固有の科学的知見、或は支配的条件に従う、代表的シミュレーション(アルゴリズム)に原理的に準拠しており、この用途別市場の産官学SPMユーザ 様には、共通に使用される特性をもち、ユーザ所属先の事業形態・から部分を担当するか否か、の差異があるのみである。 還元すれば、これら計算事例は、用途別市場の産官学SPMユーザに取り、原理的に共有され、ユーザ各位が共通に使用出来ることになる。

共通性に着目し、初めて SPM シミュレータを使われる方に向けての、ソルバ毎 SPM シミュレータ計算事例として用意しました。計算結果の解説も記載し ています。SPM シミュレータを使う時の、モデル作成を含む、基本的なシミュレーション実行例を示しています。実行例のデータファイルをダウンロー ドして、シミュレーションを行うための工程を知っていただき、その後、必要な箇所だけパラメータを変更すれば、ご要望に合ったシミュレーション 計算を実行することができます。ソルバ毎 SPM シミュレータ計算事例に用いる物質は、なるべく単純なものとし、モデル構築及び、ソルバ毎のシミュレ ーションパラメータ設定がどのように結果に反映するかが理解し易いよう解説します。本編は「有機半導体の観察」向けです。 以下に参考事例モデルと作成試料モデルでの各ソルバによる計算例のリストを示します。

1 ・ 目次 (本ページ)

2・CG(構造最適化 AFM 像シミュレータ) FreqShift (周波数シフト AFM 画像シミュレーション)

- ・ルブレン分子の観察(計算事例1)
- ・類例: DFTB_STM(量子論的SPM像シミュレータ) ConstHeightSTMによるルブレン分子の検証(計算事例2、3)
- ・類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるルブレン分子の検証(計算事例4)
- ・類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)による絶縁体(カプトン®)の参考検証(計算事例5)

- 3 · CG (構造最適化AFM像シミュレータ) FreqShift (周波数シフトAFM画像シミュレーション)
 - ・TPD の観察(計算事例6)
 - ・類例:DFTB_STM(量子論的SPM像シミュレータ)ConstHeightSTMによるTPD分子の検証(計算事例7、8)
 - ・類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるTPD分子の中央部検証(計算事例9)
 - ・類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるTPD分子の周辺部検証(計算事例10)
- 4 · DFTB_STM (量子論的SPM像シミュレータ) ConstHeightSTM (高さ一定STM画像シミュレーション)
 - ・Alq3の観察(計算事例11、12)
 - ・類例: DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるAlq3分子の検証(計算事例13)
- 5 · DFTB (量子論的 SPM 像シミュレータ) FreqShift (周波数シフト画像シミュレーション) ・Alq3 の観察(計算事例14)
- 6 · DFTB_STM (量子論的SPM像シミュレータ) ConstHeightSTM (高さ一定STM画像シミュレーション)
 - ・Ir(piq)3の観察(計算事例15、16)
 - ・類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるIr(piq)3分子の検証(計算事例17)
- 7 · DFTB_STM (量子論的SPM像シミュレータ) ConstHeightSTM (高さ一定STM画像シミュレーション)
 - ・HOPG の観察(計算事例18、19)
 - ・類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるHOPGの検証(計算事例20)
- 8・本編でのSPMシミュレータにおけるソルバー一覧

2. CG (構造最適化 AFM 像シミュレータ) FreqShift 計算事例①

●CG:ルブレン分子(rubrene)[有機 EL の一種]の周波数シフト AFM 画像シミュレーション

計算モード識別番号:[CG_FreqShift_Organic_002]

ソルバ・モード・計算例アドレス <u>https://www.aasri.jp/pub/spm/project_samples/CG/FreqShift/CG_FreqShift.php</u>

分類:CG(周波数シフト AFM 画像シミュレーション)、μmオーダー、有機半導体 事例紹介ページを下図に示します。

事例紹介ページ1

事例紹介ページ2

本事例は、ルブレンを、CG周波数シフトの分布像でシミュレートします。

CG(構造最適化 AFM 像シミュレータ)は、分子内部のエネルギーが最小になるような原子配置を探索することにより、安定な分子構造を求めます。 「ルブレンは、テトラセン誘導体の芳香族炭化水素である(有機単結晶)。ルブレンは赤色結晶の外観をしており、ケミカルライトで橙色の感光薬として使われる。ルブレン単結晶は有機半導体で最も高い移動度をもち、有機 EL(OLED)、有機電界効果トランジスタ(OFET)などに用いられる。ルブレンの単結晶は、温度勾配のつけた管状炉によって徐々に成長させる Physical Vapor Transport 法によって作成される」(wikipedia)。

本計算事例の入力条件について記載します。スキャンエリアの設定は有効です。周期境界は考慮されません。

探針は登録済みデータ「co」を用います。探針試料間距離は3.9089Åとしています。周期的境界条件が使えないため、モノマー(単量体)として 計算します。「AFMMode」は、「CG」とします。「scanmode」を「ncAFM-ConstZ(高さ一定・ノンコンタクトモード)」に設定します。探針を振動させなが ら高さ一定で平面上を走査し、探針に作用する力を計算します。探針に作用する力の他に、周波数シフトやエネルギー散逸量も出力されます。 探針振動の共鳴周波数を「25KHz」と設定しています。 以下に、紹介事例のセットアップ条件(下左図)とシミュレーション・モデルとスキャンエリアを TOP、SIDE、FRONT、俯瞰として示します。

Project Editor	2
Setup CG	
type	value
⊡-Component	
🖻 🔂 Tip	a co.txyz
E Position	
	-7
Ŷ	-7
	85
- Rotation	
alpha	0
beta	Ō
gamma	Ō
⊨ Size	
	0
bd	0
h h	1.128
Property	
young	76.5
poisson	0.22
hamaker	50
🔁 🗠 ScanArea	
	14
b b b b b b b b b b b b b b b b b b b	14
l 🦳 h	05
📃 🔄 🔄 DistanceFromSamples	3,9087
📄 🖻 🖬 Sample	📷 rubrene_01.txyz
E Position	
T H x	0
	Ō
ž – ž	0
🖻 – Rotation	
alpha	0
- beta	0
gamma	0
📄 🗇 Size	
	11.6035
b d	13.4641
	4.5913
📄 Property	
young	76.5
poisson	0.22
hamaker	50
1	
1	

事例モデルのセットアップ条件

TOP

SIDE

以下に、紹介事例の設定条件(下左図)とシミュレーション結果を3D-ViewのRainbow色表示で、TOP、SIDE、FRONT、俯瞰として示します。

Project Editor		×
Setup CG		
property	value	unit
AFMmode	CG	
🔁 Tip_Control		
scanmode	ncAFMConstZ	
delta_xy	01	Ang
delta_z	0.1	Ang
□ □ NC_Mode_Setting		
ThetaStepNumber	10	
TipZamplitude	0.5	Ang
SpringConst	200	N/m
ResoFreg 🤇	25.0	kHz
FregShift	5	Hz
ForceConst	0.5	nN
resetStruct_atZmax	No	
OneWayForceCurve	No	
i È⊷ ForceField ์		
nonElectroStatic	6-exp LJ noCutoff	
ElectroStatic	Yes	
E- RISM		
↓ TypeOfFourierTransform	log	
- Temperature	298.0	K
- NumberOfRadiusBin	512	
LogRadius Min	-4.37	In (rmin/Ang)
- DeltaLogRadius	0.021	delta In(r/Ang)
- VolumeRadius	10	Ang
⊨ Solvent		
Molecule	water	
- NumberDensity	0.03334	Ang^(-3)
⊨ Solvent Solvent		
- InitialBroadening	1.5	Ang
Tolerance	0.0001	
RISMStepMax	1000	
⊨ Solute Solvent		
InitialBroadening	1.5	Ang
Tolerance	0.0001	
	1000	
Output	=	
 •		F

設定条件

俯瞰

FRONT

ルブレン IUPAC名 5,6,11,12-テトラフェニルテトラセン、別名 5,6,11,12-テトラフェニルナフタセン、ルブレン

分子式 C42H28、

分子量 532.6717、

CAS登録番号 [517-51-1]、

- 形状 赤色結晶、
- 融点 315°C
- 出典 NIST

・ルブレンについての解説

有機半導体(ゆうきはんどうたい, Organic Semiconductor, OSC)は、半導体としての性質を示す有機物のことである。 半導体特性は、ペンタセンやアントラセン、ルブレンなどの多環芳香族炭化水素や、テトラシアノキノジメタン(TCNQ)などの低分子化合物をはじめ、 ポリアセチレンやポリ-3-ヘキシルチオフェン(P3HT)、ポリパラフェニレンビニレン(PPV)などのポリマーでも発現する。

有機半導体には有機電荷移動錯体と、ポリアセチレン、ポリピロール、ポリアニリンのような様々な直鎖状ポリマーがある。電荷移動錯体は無機半導体 と似た伝導メカニズムで起こる。そのようなメカニズムはバンドギャップによって分離された電子やホールの伝導層の存在により生じる。ポリアセリレ ン系の有機半導体も、無機のアモルファス半導体のようにトンネル効果や局在化状態、移動度ギャップ、フォノン支援ホッピングが伝導に関わっている。 無機半導体のように、有機半導体もドーピングが可能である。ドーピングしたポリアニリン (Ormecon)やPEDOT:PSSの有機半導体は、"有機金属"として も知られる。

有機半導体の一般的なキャリアはπ電子でのホールや電子である。ほぼ全ての有機化合物は絶縁体であるが、広いπ共役系を持つ分子の場合、電子がπ 電子雲を経由して移動することが可能である。多環芳香族炭化水素やフタロシアニンの結晶がこの有機半導体の例である。電荷移動錯体では、不対電子 が長時間安定状態にあり、それがキャリアとなる。このタイプの有機半導体は電子供与性分子と電子受容性分子がペアになることで得られる。 (wikipedia)

電子供与体(電子供与性分子、p型)

ー般に原子価電子の軌道に非共有電子対をもつ原子,イオン,分子で,陽荷電部や電子対の欠如した他のイオンや分子に電子を与えやすいものをいう。 アンモニア,ピリジン,トリメチルアミンなどの窒素化合物,水,エーテル,一酸化炭素などの酸素の化合物やハロゲンイオンなどがその例である。た とえばNH3 は電子供与体で,BH3 (電子受容体)と結合して一種の分子錯体をつくる。このような結合は一般の化学結合より弱く,10~50kcal程度であ る。ハロゲンイオンの水和,水素結合なども電子供与体と受容体との結合の一種である。また不純物半導体(仮性半導体)に半導性を与えるために,禁 制帯に不純物準位をつくるのに加える微量の不純物(たとえばゲルマニウムに加えるヒ素)を称する場合もある。(出典 ブリタニカ国際大百科事典 小 項目事典)

電子受容体(電子受容性分子、n型)

化合物の形成など、原子や分子やイオンの間で電子移動を伴う際に、ほかから電子を受け取るもの。

有機電荷移動錯体

電荷移動錯体(でんかいどうさくたい)とは、2種類以上の分子からなる分子間化合物のうち、電荷移動相互作用を有するものである。たとえば、電子 供与性の分子と電子受容性の分子を混合した場合に、電子供与性分子から電子受容性分子に部分的な電荷移動が起こり、その結果として電荷を帯びた分 子同士が軌道相互作用や静電相互作用などの引力によって錯体を形成する。英語のelectron-donor-acceptor complexから「EDA錯体」とも呼ばれる。 溶液中では特徴的な電荷移動吸収帯を示したり、電荷移動発光などの現象が観測されることがある。また、光励起状態において電荷移動錯体を形成する 場合には元来の蛍光や燐光を失活させることもある。

電荷移動錯体結晶は、構造的な興味もさることながら、導電性有機結晶という一分野を形成しており、有機分子でありながら電気伝導性や超伝導性を有 するものがある。最も代表的なものはテトラチアフルバレン-テトラシアノキノジメタン(TTF-TCNQ)錯体である。

錯体(さくたい、英語:complex)もしくは錯塩(さくえん、英語:complex salt)とは、広義には、配位結合や水素結合によって形成された分子の総称である。狭義には、金属と非金属の原子が結合した構造を持つ化合物(金属錯体)を指す。

電極の仕事関数とショットキー障壁を考慮すると有機トランジスタのキャリアタイプについての理解が深まる.有機・金属界面の障壁高さは界面電気二 重層も考慮に入れる必要があるが,定性的には電極の仕事関数と有機分子の最高占有軌道(HighestOccupiedMolecularOrbital:HOMO)および最低非占有 軌道(LowestUnoccupiedMolecularOrbital:LUMO)を比較することで議論できる.

通常使用される金電極のフェルミエネルギーEfはルブレンの HOMOに近いため、正孔に対する注入障壁が小さく正孔電流は流れやすい.一方、LUMOと金のフェルミエネルギーの差は約 2eVと、室温よりもはるかに高いエネルギー障壁があるため、電子の注入は比較的起こりにくい.

このため、ルブレンは通常 p型に動作する.一方、C60 フラーレンのように電子吸引性が強い分子は、HOMO-LUMOの位置が相対的に深くなっており、金の EfとLUMOのエネルギー差が小さく n型になる.このように電極金属の仕事関数と有機半導体の HOMO-LUMOの整合がキャリアの符号を決定する第一の要因 である.言葉を換えると、有機トランジスタにおけるキャリア符合は電極と半導体の間のショットキー障壁によって決まっているともいえる. 基礎講座<有機分子エレクトロニクスの基礎と応用>有機トランジスタ、岩佐義宏 他 応用物理 第 77 巻 第4号 (2008)より

有機トランジスタ材料は、低分子材料と高分子材料の二種類に大別される.メロシアニンやルブレンは低分子材料であり、ポリチオフェンは高分子材料 である.両者の特徴として、低分子材料は比較的移動度が高く真空蒸着などの乾式法で製膜されることが多く、高分子材料は低移動度だがスピンコート・ 印刷などの湿式法に適している.ただし、最近では湿式法に適した低分子材料の研究も盛んであり、液晶性材料を用いたトランジスタなど幅広い研究が 展開されている.

基礎講座〈有機分子エレクトロニクスの基礎と応用〉有機トランジスタ、岩佐義宏 他 応用物理 第 77 巻 第4号 (2008)より

ショットキー障壁:半導体と金属を接合させたとき、半導体部分に、金属の仕事関数と半導体の持つ電子親和力(フェルミエネルギー)の差が、障壁として現れる場合がある。(wikipedia)

参考1 明暗の発生原理

STMは、試料バイアス電圧が正の時(>0)に試料表面の空準位(Empty states)、

試料バイアス電圧が負のとき(<0)に充満準位(Filled states)の空間分布を観察することになる.

π結合準位(Filled states)とπ*反結合準位(Empty states)を観察しているためと理解されている[29].

[29] J. Pollman et al., Appl. Phys. A41, 21(1986).

Si(001)表面の相転移と量子現象の研究 横山 崇 著より

類例:DFTB_STM(量子論的SPM像シミュレータ) ConstHeightSTM(高さ一定STM画像シミュレーション)によるルブレン分子の検証 計算事例②、③

バイアス電圧を+4V及び-4Vとして、DFTB高さ一定STM画像シミュレーションを行います。半導体の性質を示すかどうかを確認します。

計算モード識別(番号)プロジェクト名: <u>project_file_for_beginners_version_DFTB_ConstHeightSTM_Organic_010P4</u>、<u>project_file_for_beginners_version_DFTB_ConstHeightSTM_Organic_010M4</u>

SIDE

Project Editor		×
Setup DFTB		1
property	value	unit
	DFTB_STM	
	rubrene two body parameters	_
Finitin	two_body_parameters	
amplitude	10	Ang
k_cantilever	40	N/m
- resonant_freq	170	kHz
🖻 - Ndiv	40	
-X	40	
7	40	
E-CG param	0	
MaxIter	0	
TolForce	1	nN
- TolEnergy	0.001	eV
displacement	0.1	Ang
trial_point_number	10	
Broyden param	20	_
	30 10	100(-6)
output eigenvalue	off	10 10/0
Evdw	011	
tip shape	conical 2	
-height of highest adsorbed molecule	0.00000	Ang
Hamaker_const	0.22000	aJ/mol
apex_angle	160	degree
	1000.00	Ang
imaging the second sec second second sec	1.00001	Ang
- tip_bias_voltage		v
minimum	4	v I
Ndiv	100	× I
Miv kpoints	4	
electron temperature	50	K
🖻 tip_charge_neutrality		
- minimum	-0.1	e
maximum	0.10000	e
MIV NOIV	4	
En translational_vector		
	100	Ang
Ϋ́	0	Ang
i i i i i i i i i i i i i i i i i i i	Õ	Ang
Ė b		
—X	0	Ang
l −Y	100	Ang
	U	Ang
	0	Ang
CŶ.	0	Ang
- ż	100,00000	Ang
solver type	CPU	
OpenMP_threads	4	
⊡ Output		
4		

類例の設定条件

試料探針間距離は、「1.4087Å」、スキャンエリアは「W14Å×D14Å×H0.0Å」 と設定されています。

試料バイアス電圧の正負で、明確にSTM像の明暗が反転する事がわかります。 この性質は、半導体として必要なものであり、ルブレン分子が、半導体として 使用できる可能性があることを示しています。ルブレン分子は、有機半導体として 実際、利用されていますが、シミュレーションにより、半導体としての性能を 予め、評価できることを示しているといえます。(参考1 明暗の発生原理) バイアス電圧+4Vの場合、最小電流は0.0nAですが、

バイアス電圧-4Vの場合は、最大電流が0.0nAとなり、スケールが反転 した状態といえます。

バイアス電圧+4Vまたはバイアス電圧-4Vを minimum, maximun共に設定します(電圧固定)。

バイアス電圧+4V

最小電流0. 0 n A

シミュレーション結果・Rainbow色表示モデルをSIDE(左上図)、TOP(右上図)、FRONT(右下図)、俯瞰図(左下図)として示します。

最大電流0. 0 n A

シミュレーション結果・Rainbow色表示モデルをSIDE(左上図)、TOP(右上図)、FRONT(右下図)、俯瞰図(左下図)として示します。

類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるルブレン分子の検証 計算事例④

計算モード識別(番号)プロジェクト名: project_file_beginners_version_DFTB_STS_Organic_rubrene_scanheight

STM によるトンネル電流像は表面原子の位置ではなく、表面の電子の局所的な状態密度(LDOS, local density of states)に敏感に反応します。そのこ とを利用し、探針の位置を固定してバイアス電圧を変化させて電圧・電流曲線を求め、その微分から探針直下の局所状態密度を求められます。これが、 STS(走査トンネル分光、scanning tunnelingspectroscopy)です。

ルブレン分子において、右図探針ポイント位置での、走査トンネル分光シミュレーションを行いました。

電圧・電流曲線とスペクトル曲線((dI/dV)/(I/V))を示します。
±2V近辺に、急峻な変化があるグラフが得られています。
±2Vを境に、電子の局所状態密度が大きく変化する事がわかり、
バンドギャップの存在を再現していることがわかります。

シミュレーション計算・探針ポイント位置

電圧・電流曲線

モデルのセットアップ条件

探針ポイント位置は「x:0.0Å、y:2.0Å、z:4.5913Å」、試料探針間距離は、「0.0Å」、スキャンエリアは「W8.0Å×D8.0Å×H0.0Å」と設定され ています。

Project Editor		×
Setup DFTB		
property	value	unit
mode	DFTB_STS	
title	differential conductance_pentacene	
stm mode	ConstantHeight	
⊡tip		
amplitude	160.00000	Ang
k_cantilever	41.00000	N/m
- Ndiv	172.00000	KITZ
	64	
<u> </u>	64	
	15	
MaxIter	0	
TolForce	1.0	nN
TolEnergy	0.001	eV
- displacement	0.10000	Ang
Prouden param	10	
MaxIter	150	
TolEnergy	0.1	10^(-6)eV
output_eigenvalue	off	
⊡FVdw tip obsec	opping	
beight of highest adsorbed molecule	0.00000	Ane
Hamaker const	0.22000	aJ/mol
- apex_angle	120.000	degree
tip_height	1000.00	Ang
i i i i i i i i i i i i i i i i i i i	1.00000	Ang
delta z	0.20000	Ang
set_point	5	nA
TolCurr	0.10000	nA
Maxiter	150	
minimum	-4	V
maximum	4	Ŷ
Ndiv	100	
Ndiv_kpoints	Б	
i i i i i i i i i i i i i i i i i i i	on	
minimum	-5.0	eV
maximum	+5.0	eV
Ndiv	1024	V
En tip charge neutrality	50	N
minimum	-0.1	e
maximum	0.10000	e
Ndiv	4	
□ ⊟ translational_vector		
	100	Ang
- Y	0	Ang
l i i i i i i i i i i i i i i i i i i i	0	Ang
	0	Ang
Ŷ	100	Ang
,	0	Ang
Erc y	8	
N N N N N N N N N N N N N N N N N N N	0	Ang
Cz	100.00000	Ang
OpenMP_threads	4	
⊡ - Output		

設定条件

※赤丸は、本モデル解析のための基本条件となります。

スペクトル曲線

類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)による絶縁体(カプトン®)の参考検証 計算事例⑤

計算モード識別(番号)プロジェクト名: project_file_for_beginners_version_DFTB_STS_Organic_kapton

Project Faitor	×
Setup DFTB	
property	value
property	KETTE STO
title	DFTB STS
tus body payameter folder	auterential conductance
two_body_parameter_toider	two_body_parameters
Fu tip	Constant Height
	160,00000
k cantilever	41.00000
resonant freq	172,00000
	112.00000
X	64
Ϋ́	64
Ż	15
⊟-CG param	
MaxIter	0
TolForce	1.0
TolEnergy	0.001
displacement	0.10000
- trial_point_number	10
🖻 Broyden param	
MaxIter	150
- TolEnergy	0.1
- output_eigenvalue	off
🖻 - Fvdw	
	conical
height_of_highest_adsorbed_molecule	0.00000
Hamaker_const	0.22000
apex_angle	120.000
típ_height	1000.00
·radius_of_tip_apex	1.00000
🖻 feedback_param	
delta_z	0.20000
set_point	5
- TolCurr	0.10000
- MaxIter	150
😑 tip_bias_voltage	
minimum	-4
maximum	4
- Ndiv	100
Miv_kpoints	6
i ⊟- DoS	
i∼ output_dos	on
minimum	-5.0
- maximum	+5.0
- Ndiv	1024
electron_temperature	00
	0.1
minimum	-0.1
maximum	0.10000
i soo NOIV	4
	100
	0
7	0
	0
	0
\sim	100
7	100
	0
	0
V V	0
7	100,00000
OpenMR threade	4
re- OpenMr_trireaus	4
Er output	
•	► I

シミュレーション計算・探針ポイント位置 絶縁体としてカプトン®について、走査トンネル分光を 行ないました。電圧・電流曲線およびスペクトル曲線より、 -3V近辺のみに急峻な変化があるグラフが得られています。 -3Vを境に、電子の局所状態密度が大きく変化することが 判りましたが、プラス側にはそのような境は存在しません。 半導体の性質を示す現象(バンドギャップ)がシミュ レーション計算出来なかったことにより、カプトン®は、 半導体としての利用に向いていないといえます。

電圧・電流曲線

スペクトル曲線

探針ポイント位置は「x:0.0Å、y:2.0Å、z:0.9854Å」、試料探針間距離は、「0.0Å」、スキャンエリアは「W8.0Å×D8.0Å×H3.0Å」と設定され ています。

3 · CG (構造最適化AFM像シミュレータ) FreqShift 計算事例⑥

●CG:TPD (triphenyldiamine) 分子[有機 EL の一種]の周波数シフト AFM 画像シミュレーション

計算モード識別番号:[CG_FreqShift_Organic_003]

ソルバ・モード・計算例アドレス <u>https://www.aasri.jp/pub/spm/project_samples/CG/FreqShift/CG_FreqShift.php</u>

分類:CG(周波数シフト AFM 画像シミュレーション)、µmオーダー、有機半導体

事例紹介ページを下左図に示します。

事例紹介ページ1

本事例は、TPD分子を、CG周波数シフト像でシミュレートします。

TPD分子はトリフェニルアミン誘導体(ホール輸送材料)とも称されます。

「ホール輸送材料:発光層へホールを輸送する働きをし、発光層と接するため発光層から励起エネルギーが移動せず、さらには高層と相互作用してエキサイプレックスを形成しないように、発光層より もエネルギーバンドギャップが大きな材料が用いられる。」(有機 EL 素子の基礎及びその作製技術 材料科学の基礎:シグマ アルドリッチ ジャパン合同会社ニュースレターより)

本計算事例の入力条件について記載します。スキャンエリアの設定は有効です。周期境界は考慮されません。

探針は登録済みデータ「co」を用います。探針試料間距離は 4.3Åとしています。周期的境界条件が使えないため、モノマー(単量体)として計算しま す。「AFMMode」は、「CG」とします。「scanmode」を「ncAFM-ConstZ(高さ一定・ノンコンタクトモード)」に設定します。探針を振動させながら高さ一 定で平面上を走査し、探針に作用する力を計算します。探針に作用する力の他に、周波数シフトやエネルギー散逸量も出力されます。 探針振動の共鳴周波数を「25KHz」と設定しています。スキャンエリアは「W20Å×D12Å×H0.5Å」と設定されています。

Setup CG		X
property	value	unit
AFMmode	CG	
È Tip_Control		
scanmode	ncAFMConstZ	
delta_xy	0.1	Ang
delta_z	0.1	Ang
□ □ NC_Mode_Setting		
ThetaStepNumber	10	
lipZamplitude	0.5	Ang
SpringConst	200	N/m
FreeSofreq	25.0	KHZ
ForeaConst	05	⊓Z wM
recetStruct_st7max	No.	TIN I
	No	
EnceField	NO	
	6-evo L.L.noCutoff	
ElectroStatic	Yes	
Electrocitics	100	
TypeOfFourierTransform	log	
Temperature	298.0	K
- NumberOfRadiusBin	512	
- LogRadiusMin	-4.37	In(rmin/Ang)
DeltaLogRadius	0.021	delta In(r/Ang)
VolumeRadius	10	Ang
📄 🖻 Solvent		
Molecule	water	
NumberDensity	0.03334	Angi (-3)
□ □ Solvent_Solvent		
InitialBroadening	1.5	Ang
l lolerance	1,000	
RISMStepMax	1000	
Initial Dreadening	15	0 m m
	0.0001	mrig
RISMStep May	1000	
- Rusmotepmax	1000	
4		▶
<u></u>		

設定条件

モデルのセットアップ条件

※赤丸は、本モデル解析のための基本条件となります。

TPD分子についての解説を以下に記します。

トリフェニルアミン(英: Triphenylamine)は芳香族アミンの一種であり、化学式 (C6H5)3N ないし Ph3N で表される有機化合物である。ほとんどのア ミンが塩基性であるのに対し、トリフェニルアミンは非塩基性である。誘導体は導電性およびエレクトロルミネセンスに有用な特性を有し、有機発光 ダイオードの正孔輸送層に使用されている。トリフェニルアミンは、ジフェニルアミンのアリール化により作ることができる。(wikipedia)

TPD: (N, N'-diphenyl-N, N'-bis(3-methylphenyl)-1, 1-biphenyl-4, 4'-diamine)の薄膜の正孔移動度は10-3 cm2/Vsであり、ペンタセンの移動度に 比べて3桁も低下する。更に、代表的な電子輸送材料であるAlq3(tris(8-hydroxyquinoline) aluminum)の電子移動度は、TPDよりも3桁低い10-6 cm2/Vs である。(1,3,5-トリアジン化合物の合成と電子輸送性 田中 剛他、TOSOH Research & Technology Review Vol.50 (2006))

N,N' -ビス(3-メチルフェニル)-N,N' -ジフェニルベンジジン N,N' -Bis(3-methylphenyl)-N,N' -diphenylbenzidine 別名: TPD 分子式: [-C6H4-4-N(C6H4CH3)C6H5]2 分子量: 516.67 CAS番号: 65181-78-4 (シグマ アルドリッチ ジャパンより)

以下に、シミュレーション・モデルとスキャンエリアをTOP、SIDE、FRONT、俯瞰として示します。

SIDE

FRONT

俯瞰

以下に、シミュレーション結果を3D-ViewのRainbow色表示で、TOP、SIDE、FRONT、俯瞰として示します。

俯瞰

FRONT

類例:DFTB_STM (量子論的SPM像シミュレータ) ConstHeightSTM (高さ一定STM画像シミュレーション)によるTPD分子の検証 計算事例⑦、⑧

バイアス電圧を+4V及び-4Vとして、高さ一定STM画像シミュレーションを行います。半導体の性質を示すかどうかを確認します。

計算モード識別(番号)プロジェクト名:<u>project_file_for_beginners_version_DFTB_ConstHeightSTM_Organic_011_test_TPD_P4</u>

project_file_for_beginners_version_DFTB_ConstHeightSTM_Organic_011_test_TPD_M4

バイアス電圧+4Vでの シミュレーション結果・ Rainbow色表示モデルを SIDE (左上図)、TOP (右上図)、 FRONT (右下図)、俯瞰図 (左下図) として示します。

バイアス電圧—4Vでの シミュレーション結果・ Rainbow 色表示モデルを SIDE (左上図)、TOP (右上図)、 FRONT (右下図)、俯瞰図 (左下図) として示します。

試料バイアス電圧の正負で、明確に STM 像の明暗が反転する事(半導体としての性質)がわかります。

類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるTPD分子の中央部検証 計算事例⑨

計算モード識別(番号)プロジェクト名:<u>project_file_for_beginners_version_DFTB_STS_Organic_TPD_center</u>

STM によるトンネル電流像は表面原子の位置ではなく、表面の電子の局所的な状態密度(LDOS, local density of states)に敏感に反応します。そのこ とを利用し、探針の位置を固定してバイアス電圧を変化させて電圧・電流曲線を求め、その微分から探針直下の局所状態密度を求められます。これが、 STS(走査トンネル分光、scanning tunnelingspectroscopy)です。

TPD分子において、下図探針ポイント位置での、走査トンネル分光シミュレーションを行いました。電圧・電流曲線とスペクトル曲線((dI/dV)/(I/V))を示します。±1.5V近辺に、急峻な変化があるグラフが得られています。±1.5Vを境に、電子の局所状態密度が大きく変化する事がわかります。 計算ポイントにより異なりますが、バンドギャップの存在を再現していることがわかります。

シミュレーション計算・探針ポイント位置

類例のセットアップ条件

Project Editor		
Setup DFTB		
property	alue	
mode	DFTB_STS	
title	otterential_conductance_pentaci	
stm mode	ConstantHeight	
	Constant Ioight	
amplitude	160.00000	
k_cantilever	41.00000	
resonant_freq	172.00000	
	64	
	64	
	15	
∏⊡-CG_param MauTear	· ·	
	10	
TolEnergy	0.001	
displacement	0.10000	
trial_point_number	10	
⊡∽ Broyden_param	150	
	0.1	
output_eigenvalue	off	
🖻 - Fydw		
height of highest adequired welcoule	conical	
Hamaker const	0.22000	
apex angle	120.000	
- tip_height	1000.00	
radius_of_tip_apex	1.00000	
Em teedback_param	0.20000	
set point	5	
TolCurr	0.10000	
MaxIter	150	
	-4	
maximum	4	
- Ndiv	100	
Miv_kpoints	6	
E-DoS		
minimum	-50	
maximum	+5.0	
- Ndiv	1024	
electron_temperature	50	
Em tip_cnarge_neutrality	-01	
maximum	0.10000	
Ndiv	4	
🖻 translational_vector		
	100	
l Cŷ	0	
, ż	ŏ	
⊨ ⊨ L	-	
-X	100	
	0	
i in c		
	0	
	0	
···∠ OpenMP threads	100.00000	
	4	
1-1		

スペクトル曲線

電圧・電流曲線

類例の設定条件

類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるTPD分子の周辺部検証 計算事例⑩

計算モード識別(番号)プロジェクト名:<u>project_file_for_beginners_version_DFTB_STS_Organic_TPD_side</u>

TPD分子において、下図探針ポイント位置での、走査トンネル分光シミュレーションを行いました。 電圧・電流曲線とスペクトル曲線((dI/dV)/(I/V))を示します。 -1.5V近辺および+3.5V近辺に、急峻な変化があるグラフが得られています。

-1.5Vおよび+3.5Vを境に、電子の局所状態密度が大きく変化する事がわかります。 計算ポイントにより異なりますが、バンドギャップの存在を再現していることがわかります。

Project Editor	2
Setup DFTB	
type	value
Component	1
🖻 🗟 Tip	🗟 tip si4.xvz
🖻 Position 🥖	
⊤ ⊢x	-8
—у	-2
Z	4.5913
📄 Rotation	
alpha	0
beta	U
gamma	U
	694
d d	5.41
h	202466
	2.02400
voung	76.5
poisson	0.22
hamaker	50
🔁 🗇 ScanArea	
···· W	8
d d	8
h h	3
DistanceFromSamples	: 1.9687
🖃 📼 Sample	ET TPD01 xyz
Position	
X	U
y y	0
Potation	0
	0
- aipina - beta	0
gamma	Ő
Size	•
	17.9637
d	10.529
h h	2.6526
⊡ Property	705
young	/6.5
poisson	0.22
namaker	00
2	

シミュレーション計算・探針ポイント位置

Project Editor	×
Setup DFTB	
property	value
mode	DETBISTS
title	differential_conductance_pentaci
wo_body_parameter_toider	two_body_parameters ConstantHeight
	Constant leight
amplitude	160.00000
k_cantilever	41.00000
resonant_freq	172.00000
	64
Ŷ	64
L Z	15
E-CG_param	0
TolForce	0 10
TolEnergy	0.001
displacement	0.10000
Ltrial_point_number	10
⊢- Broyden_param	150
	01
output_eigenvalue	off
🖨 Fydw	
tip_shape	conical
Hamaker const	0.00000
apex angle	120.000
- tip_height	1000.00
radius_of_tip_apex	1.00000
E-feedback_param	0.20000
set point	5
TolCurr	0.10000
- MaxIter	150
E-tip_bias_voltage	_1
maximum	4
Ndiv	100
Mdiv_kpoints	6
E DoS	
minimum	on -50
maximum	+5.0
- Ndiv	1024
electron_temperature	50
	-01
maximum	0.10000
Ndiv	4
🖨 translational_vector	
	100
ΩŶ	0
Ż	Ő
l ⊡ b j	
	100
	0
	0
	0
	0
∠ OpenMR threado	100.00000
Propensie unreaus	4

スペクトル曲線

類例の設定条件

4 · DFTB_STM (量子論的 SPM 像シミュレータ) ConstHeightSTM (高さ一定 STM 画像シミュレーション)

計算事例①、①

●DFTB : ConstHeightSTM (高さ一定 STM 画像シミュレーション) Alq3

計算モード識別番号: [DFTB_ConstHeightSTM_Organic_012]

ソルバ・モード・計算例アドレス <u>https://www.aasri.jp/pub/spm/project_samples/DFTB/ConstHeightSTM/DFTB_ConstHeightSTM.php</u>

分類: DFTB ConstHeightSTM (高さ一定、トンネル電流像)、 μ mオーダー、有機半導体 事例紹介ページを下図に示します。

事例紹介ページ1

事例紹介ページ2

本事例は、有機EL素子材料の電子輸送層および発光層として用いられる**A1q3**の表面を、高さ一定のトンネル電流像でシミュレートします。 探針は作成済みデータ「tip_si4.xyz」を用います。本計算事例の入力条件について記載します。「STM_MODE」は「ConstantHeight」(Default、指定 のない場合:探針の高さ一定モード)に設定しています。並列化処理設定を行っています(4スレッド対応)。スキャンエリアは「W12Å×D12Å×H0.0 Å」と設定されています。周期境界条件を考慮できますが、モノマーとして解析します。探針試料間距離は0.45916Åとしています。バイアス電圧 +4.0V とバイアス電圧 -4.0V での計算を設定例条件で行わせました。本事例では、試料モデルを多少回転させています(Rotation: α =15、 β =10)。 試料バイアス電圧の正負で、明確にSTM像の明暗が反転する事(半導体としての性質)がわかります(バンドギャップの再現)。 以下に、紹介事例のセットアップ条件(下左図)とシミュレーション・モデルとスキャンエリアを TOP、SIDE、FRONT、俯瞰として示します。

SIDE

TOP

俯瞰

FRONT

Setup DFTB property Value - mode DFTB_STM - tive body parameter folder two body parameters - tip - amplitude 10 - koo body parameter folder 10 - tip - amplitude 10 - resonant freq 170 - Ndiv 40 - Y 40 - Z 0 - CG param 0 - TolEnergy 0.001 - TolEnergy 0.001 - TolEnergy 0.001 - TolEnergy 10 - TolEnergy 10 - TolEnergy 10 - output eigenvalue off - TolEnergy 10 - output eigenvalue off - Fordw conical - tip shape conical - height of highest_adsorbed_molecule 0.00000 - apex_angle 160 - tip bias voltage 4 - minimum 4 - Maitive <td< th=""><th colspan="3">Project Editor</th></td<>	Project Editor		
property yake mode DFTB_STM title two_body_parameter_folder two_body_parameters tip	Setup DFTB		
mode DFTB_STM two body parameter folder two body parameters two body parameter folder two body parameters tip	property	value	
Initial Nega two_body parameter folder two_body parameters two_body parameter folder two_body parameters two_cantilever 40	- mode	DFTB_STM	
→ two_body_parameter folder two_body_parameters □ tip	title	No3	
□ - tip □ 0 □ - k cantilever 40 □ - resonant_freq 170 □ - Ndiv 40 □ - X 40 □ - Z 0 □ - CG param 0 □ - TolForce 1 □ - TolEnergy 0.001 □ - TolEnergy 0.001 □ - TolEnergy 0.001 □ - TolEnergy 10 □ - TolEnergy 0.001 □ - TolEnergy 0.001 □ - TolEnergy 10 □ - output eigenvalue off □ - TolEnergy 10 □ - output eigenvalue off □ - TolEnergy 10 □ - output eigenvalue off □ - TolEnergy 10 □ - output eigenvalue off □ - Teip shape conical □ - Hamaker const 0.22000 □ - apex_angle 160 □ - tip bias voltage 4 □ - minimum -0.1 □ - minimum -0.1 □ - minimum -0.1 □ - Maxitw 0 <t< td=""><td>two_body_parameter_folder</td><td>two_body_parameters</td></t<>	two_body_parameter_folder	two_body_parameters	
→ amplitude 10 → k_cantilever 40 → resonant_freq 170 → Ndiw 40 → Z 0 ⇒ CG_param 0 → MaxIter 0 → TolForce 1 → TolForce 1 → TolEnergy 0001 → splacement 0.1 → trial point_number 10 ▷ Broyden param - → MaxIter 30 → TolEnergy 10 → output_eisenvalue off ○ - Fvdw - → maker_const 0.22000 → apex_angle 160 → tip_height 100000 → radius of tip_apex 100000 → radius of tip_apex 1000000 → radius of tip_apex 0 → Ndiv 100 → Ndiv 4 → maximum 0.10000 → radius of tip_apex 0 → tip_heiget_contemperature 50 ⊖ translational_vector -	Ģ∼tip	40	
→ k_cantilever 40 → resonant_freq 170 → Ndiv 40 → Y 40 → Z 0 → OGparam 0 → TolEnergy 0001 → TolEnergy 0001 → tiglacement 0.1 → TolEnergy 00 → MaxIter 30 → TolEnergy 10 → output_eigenvalue off → TolEnergy 10 → apex_angle 160 → tig_bias_voltage 0 → tig_bias_voltage 4 → maximum 4 → maximum 4 → Maiv 0 → Ndiv 4 → tig_barbait 100000 → A 100 → Z 0	amplitude	10	
→ resonant_treq 170 → Ndiv 40 → Y 40 → Z 0 → CG.param 0 → TolForce 1 → MaxIter 30 → MaxIter 30 → MaxIter 30 → TolEnergy 10 → output_eigenvalue off → NaxIter 30 → TolEnergy 10 → output_eigenvalue off → tip_shape conical → height of highest_adsorbed_molecule 0.00000 → Hamaker_const 0.22000 → apex_angle 160 → tradius of tip_apex 1.00000 → radius of tip_apex 1.00000 → translational_vector 4 → electron_temperature 50 ⊖ translational_vector 0 → Y 0 → Z 0 → Y 0	k_cantilever	40	
→ X 40 → Y 40 → Z 0 → MaxIter 0 → TolForce 1 → TolEnergy 0.001 → displacement 0.1 → trial point_number 10 ➡ Broyden param 0 → MaxIter 30 → TolEnergy 10 → waxIter 30 → TolEnergy 10 → output eigenvalue off → Fvdw conical → height of_highest_adsorbed_molecule 0.00000 → apex_angle 160 → tip_bias_voltage 1.00000 → radius_of_tip_apex 1.00000 → radius_of_tip_apex 1.00000 → radius_of_tip_apex 1.00000 → ninimum 4 → maximum 0.10000 → Ndiv 100 → Ndiv 4 ← electron_temperature 50 ⊖ translational_vector 4 → Tolenergy 0 → Z 0 → X 0 → Y 0<	resonant_freq	170	
Y 40 Y 0 -CG param 0 -TolForce 1 TolEnergy 0.001 -displacement 0.1 -TolEnergy 0 -MaxIter 30 -TolEnergy 0 -MaxIter 30 -TolEnergy 10 -MaxIter 30 -TolEnergy 10 -output eigenvalue off -Tolenergy 10 -output eigenvalue off -Tolenergy 10 -apex_angle 160 -tip, hape conical -tip, height 100000 -apex_angle 160 -tip, height 1000000 -tip, charge neutrality 4 -minimum 41 -electron_temperature 50 -translational_vector 4 -translational_vector -X -taslational_vector 0 -X 0 -Y 0 -Z 0 -Y 0 <td></td> <td>40</td>		40	
Image: Second secon	L	40	
□ CG param 0 □ TolForce 1 □ TolForce 1 □ TolEnergy 0.001 □ displacement 0.1 □ TolEnergy 0 □ Broyden param 0 □ maxIter 30 □ TolEnergy 10 □ output eigenvalue off □ rup shape conical □ height of highest_adsorbed_molecule 0.00000 □ Hamaker_const 0.22000 □ apex_angle 160 □ tip height 1000.00 □ radius of tip apex 1.00000 □ tip height 1000.00 □ maximum 4 □ minimum -0.1 □ maximum 0.10000 □ Ndiv 4 □ minimum -0.1 □ □ -Y 0 □ □ -Y 0 □ □		40	
□ MaxIter 0 □ TolEnergy 0.001 □ displacement 0.1 □ TolEnergy 10 □ Broyden param 0 □ MaxIter 30 □ TolEnergy 10 □ MaxIter 30 □ TolEnergy 10 □ output eigenvalue off □ - TolEnergy 10 □ output eigenvalue off □ - Tolenergy 10 □ - output eigenvalue off □ - output eigenvalue output □ - tip shape conical □ - height of highest_adsorbed_molecule 000000 □ - Hamaker_const 0.22000 □ - apex_angle 160 □ - tip height 100000 □ - tip shape 0 □ - tip shape -0.1 □ - maximum 0.10000 □ - X 0 □ <td></td> <td>0</td>		0	
→ TolForce 1 → TolForce 1 → TolEnergy 0.001 → trial_point_number 10 → MaxIter 30 → Hight 100000 → Hight 100000 → Hamaker_const 0.22000 → aximum 4 → maximum 4 → Maxiw 1000 → Ndiv 4 → Hamaker_consts 4 → Hamaker_consts 4 → Hamaker_consts 4 → Hamaker_consts 0	Lin Colparam	0	
Image: Second Secon		1	
Image: Second secon	TolEpergy	0.001	
□ trial point number 10 □ MaxIter 30 □ TolEnergy 10 □ output_eigenvalue off □ tip_shape conical □ height of highest_adsorbed_molecule 0.00000 □ Hamaker const 0.22000 □ apex_angle 160 □ tip_height 1000.00 □ radius of tip_apex 1.00000 □ radius of tip_apex 1.00000 □ hoins voltage 4 □ minimum 4 □ Mdiv 100 □ Ndiv 100 □ Ndiv 100 □ Minimum -0.1 □ maximum 0.10000 □ Miv 4 □ minimum -0.1 □ maximum 0.10000 □ Ndiv 4 □ translational_vector -0.1 □ Z 0 □ Z 0 □ Z 0 □ Z 0 □ Z 0 □ Z 0 □ Z	displacement	01	
□ Broken param □ MaxIter 30 □ TolEnergy 10 □ output_eigenvalue off □ tip_shape conical □ height_of_highest_adsorbed_molecule 0.00000 □ Hamaker_const 0.22000 □ apex_angle 160 □ tip_height 1000.00 □ radius_of_tip_apex 1.00000 □ radius_of_tip_apex 1.00000 □ minimum 4 □ hight 100000 □ maximum 4 □ hight 1000 □ Maximum 0.10000 □ maximum 0.10000 □ Max 100 □ maximum 0.100000 □ Ndiv 4 □ translational_vector □ □ -X 0 □ -X 0 □ -X 0 □ -X 0 <	trial point number	10	
ImaxIter 30 ImaxIter 0	En Broyden param	10	
Image: Second secon	MaxIter	30	
→ output_eigenvalue off → tip_shape conical → height_of_highest_adsorbed_molecule 0.00000 → Hamaker_const 0.22000 → apex_angle 160 → tip_height 1000.00 → radius_of_tip_apex 1.00000 → radius_of_tip_apex 1.00000 → maximum 4 → maximum 4 → Maiv_kpoints 4 → electron_temperature 50 ⊖ tip_charge_neutrality 0.10000 → Mdiv 4 → maximum 0.10000 → Ndiv 4 → electron_temperature 50 ⊖ tip_charge_neutrality 4 → maximum 0.10000 → Ndiv 4 ⊖ translational_vector 4 ⊖ translational_vector	TolEnergy	10	
Image: Second	output eigenvalue	off	
image: tip_shape conical image: hight of_highest_adsorbed_molecule 0.00000 image: hight of_highest_adsorbed_molecule 0.02000 image: hight of_highest_adsorbed_molecule 0.02000 image: hight of_highest_adsorbed_molecule 0.00000 image: hight of_highest_adsorbed_molecule 0.02000 image: hight of_highest_adsorbed_molecule 0.00000 image: hight of_highest_adsorbed_molecule 0 image: hight of_highest_adsorbed_molecule 0 image: hight of_highest_adsorbed_molecule 0 image: hight of_highest_adsorbed_molecule 0 image: hight of_hight of_high		on	
→height of highest adsorbed_molecule 0.00000 →Hamaker_const 0.22000 →apex_angle 160 ↓ tip height 1000.00 ↓ radius_of_tip_apex 1.00000 ➡ minimum 4 ↓ maximum 4 ↓ maximum 4 ↓ maximum 4 ↓ maximum 4 ↓ Mdiv 100 ▶ Ndiv kpoints 4 ← electron_temperature 50 ▷ tip_charge_neutrality −0.1 ↓ maximum 0.10000 ↓ Ndiv 4 ▷ translational_vector 0 ▷ A 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 0 ↓ Z 100.0000	tip shape	conical	
→ Hamaker const 0.22000 → apex_angle 160 → tip_height 1000.00 → radius_of_tip_apex 1.00000 □→ tip_bias_voltage 4 → minimum 4 → maximum 4 → Mdiv 100 → Ndiv 100 → Ndiv 4 → electron_temperature 50 □→ tip_charge_neutrality -0.1 → maximum 0.100000 → Ndiv 4 □→ tip_charge_neutrality -0.1 → maximum 0.100000 → Ndiv 4 □→ translational_vector -0.1 □→ a	height of highest adsorbed molecule	0.00000	
apex_angle 160	Hamaker const	0.22000	
	apex angle	160	
radius of tip_apex 1.00000 □ tip_bias_voltage 4 maximum 00000 maximum 0.10000 maximum 0.100000 maximum 0.100000	tip height	1000.00	
□ tip_bias_voltage	radius of tip apex	1.00000	
	🖻 tip bias voltage	\sim	
maximum 4 Ndiv 100 Ndiv_kpoints 4 electron_temperature 50 □tip_charge_neutrality -0.1 maximum 0.10000	minimum	4	
Image: Ndiv 100 Mdiv_kpoints 4 electron_temperature 50 □ tip_charge_neutrality -0.1 □ maximum 0.10000 □ Mdiv 4 □ translational_vector 4 □ translational_vector 0 □ X 100 □ Y 0 □ - X 0 □ - X 0 □ - X 0 □ - Z 0 □ - Y 100 □ - Z 0 □ - Y 100 □ - Z 0 □ - Y 100 □ - Z 0 □ - C 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 100.00000 □ - Z 100.00000 □ - Z 100.00000 □ - Z 100.000000 <	- maximum	4	
→ Ndiv_kpoints 4 → electron_temperature 50 ⊖ tip_charge_neutrality -0.1 → minimum -0.1 → maximum 0.10000 → Ndiv 4 ⊖ translational_vector -0.1 ⊖ → a -0.1 → ¬Y 0 → ¬Y 0 → ¬Y 0 → ¬Y 100 → ¬Y 0 → ¬Y 100 → ¬Y 0 → ¬Z 100.00000 → ¬Y 0 → ¬Z 100.00000 → ¬Y 0 → ¬Z 100.00000 → ¬Y 0 → ¬Z 0 → ¬Z 0 → ¬Z 0 → ¬Z 0	L Ndiv	100 \	
lectron_temperature 50 □ tip_charge_neutrality -0.1 □ maximum 0.10000 □ Mdiv 4 □ translational_vector 4 □ - a 0 □ - Y 0 □ - Z 0 □ - C 0 □ - C 0 □ - X 0 □ - Y 100 □ - Z 0 □ - C 0 □ - C 0 □ - Y 100 □ - Z 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □ - C 0 □	- Ndiv_kpoints	4	
□- tip_charge_neutrality -0.1 □- maximum 0.10000 □ Mdiv 4 □- translational_vector 4 □- translational_vector 0 □- X 100 □- Y 0 □ Z 0 □ X 0 □ Z 0 □	electron_temperature	50	
minimum -0.1 maximum 0.10000	🗈 tip_charge_neutrality		
Image: maximum 0.10000 Ndiv 4 Image: maximum 100 Image: maximum 100 Image: maximum 0 Image: maximum 0 <td>minimum</td> <td>-0.1</td>	minimum	-0.1	
Image: Ndiv 4 Image: Image	- maximum	0.10000	
⊡- translational_vector □- a □- X 100 □- Y 0 □- b 0 □- Y 100 □- Y 0 □- Y 0 □- Y 100 □- Z 0 □- C 0 □- Z 100.00000 □- Z 100.00000 □- Solver_type CPU □ OpenMP_threads 4 ID- Output 0	- Mdiv	4	
□···X 100 □···Y 0 □···Y 0 □···Y 0 □···Y 100 □···X 0 □···Y 100 □···Y 0 □····X 0 □····X 0 □·····X 0 □····································	📮 translational_vector		
Image: Second secon		100	
U U Z O U U V U U U U U U U U U U U U U	L – Č	100	
Image: Second			
□ ∴ X 0 □ ∴ X 100 □ Z 0 □ Z 0 □ Z 100.00000 Y 0 Z □ Z 100.00000 Solver_type CPU ·OpenMP_threads 4 It - Output Z		0	
Image: Ward of the second s			
		100	
		100	
		0	
		0	
Solver_type CPU → Solver_type CPU → OpenMP_threads 4 ↔ Output		0	
····solver_type CPU ····OpenMP_threads 4 ⊡···Output		100,00000	
OpenMP_threads 4 ⊡ Output		CPU	
E Output 4	OpenMP threads	4	
E Output	Propertient	7	
	4		

TIPバイアス電圧+4Vでの、シミュレーション結果・Rainbow色表示モデルをSIDE(左上図)、 TOP(右上図)、FRONT(右下図)、俯瞰図(左下図)として示します。

minimum, maximun共に設定します (電圧固定)。

TIPバイアス電圧―4Vでの、シミュレーション結果
Rainbow色表示モデルをSIDE(左上図)、
TOP(右上図)、FRONT(右下図)、俯瞰図(左下図)
として示します。

・Alg3について

トリス(8-キノリノラト)アルミニウム (tris(8-hydroxyquinolinato)aluminium) は、アルミニウム金属と3つの8-キノリノール配位子の二座配位による錯体であり、有機ELパネルの発光材料である。一般にAlq3と略され、mer体とfac体の幾何異性体が知られている。 この化合物は8-キノリノールとアルミニウム(III)との反応によって得られる。Alq3は最初の有機EL (OLED) デバイスの素子として知られており、キノリン環に様々な置換基を導入した化合物のルミネッセンス特性が広く研究されている。(wikipedia)

Alq3は、電子輸送層および発光層(緑色)として用いられることが多い。

有機EL素子に電圧を印加することによって、プラス極(ITO)側からはホールが、マイナス極(MgAg)側からは電子が、有機薄膜中に注入される。両者 は電界に沿って有機薄膜中を移動し、界面で出会う。この時ホールと電子が再結合することによって発光分子(Alq3)の励起状態が生成し、それが基底状 態に落ちるときにフォトンを放出する。ホール輸送層(NPB)は電極からのホール注入と輸送を助け、また、反対から来た電子をブロックして閉じ込めて 再結合効率を高める。(有機EL素子の作製と発光測定 分子科学研究所 平本教授他より)

• 電子輸送材料

陰極から電子を注入し輸送する機能を持つ。ホール輸送層と同様に、バンドギャップが広い材料が好ましい。また、発光層内で生成した励起子の移動を 阻止する働きもあるため、励起子阻止層や、BCP はホールの移動を阻止する作用があるため、ホールブロッキング層として使われることもある。 (シグマ アルドリッチ ジャパンより) ・発光材料

発光材料として最も有名なものは、Alq3 であり、ホール輸送層と組み合わせて用いられる。その他にも、金属錯体には電子輸送性を併せ持つ発光材料 も多く発表されている。発光材料の中でも、高濃度条件下で蛍光量子収率が減少(濃度消光)する材料は、ホスト材料に発光材料を分散させて用いる。 このような材料には、希薄状態で100%近い蛍光量子収率を示すレーザー色素材料であるCoumarin やDCM、ルブレン等がある。 (シグマ アルドリッチ ジャパンより)

有機EL素子、有機トランジスタ素子ともに、キャリア注入による動作がメインとなっており、無機半導体のようなドーピングを用いるケースは少なくなっている。有機EL素子と有機トランジスタ素子の違いは、膜厚の違いのみで、キャリア注入方式による動作は同じとなっている。

トリス(8-ヒドロキシキノリン)アルミニウム

Tris-(8-hydroxyquinoline)aluminum

sublimed grade, 99.995% trace metals basis

別名: 8-ヒドロキシキノリン アルミニウム塩, Alq3,

アルミニウム 8-ヒドロキシキノリナート,アルミニウムオキシナート,

トリス-(8-ヒドロキシキノリナト)アルミニウム CAS番号 2085-33-8 分子式(Hill方式) C27H18A1N303 分子量 459.43 有機ELデバイス用発光材料(緑色)および電子輸送材料として有用です。 (シグマ アルドリッチ ジャパンより)

類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるAlq3分子の検証 計算事例⑬

計算モード識別(番号)プロジェクト名:project_file_for_beginners_version_DFTB_STS_Organic_alq3_center_broad

Alq3 分子において、下図探針ポイント位置での、走査トンネル分光シミュレーションを行いました。 電圧・電流曲線とスペクトル曲線((dI/dV)/(I/V))を示します。 -0.5V、-3.5V近辺および+3.5V近辺に、急峻な変化があるグラフが得られています。 バンドギャップの存在を再現していることがわかります。

туре	value	
⊡- Component		
🖨 🖬 Tip	📷 tip_si4.xyz	
🖻 Position		
T H-x	0	
	0	
1 L. 2	9.9825	
🖻 - Rotation		
alpha	0	
beta	0	
gamma	0	
🖻 Size		
···· W	6.24	
d	5.41	
h	2.02466	
🖻 Property		
young	76.5	
- poisson	0.22	
hamaker	50	
🖻 - ScanArea	_	
···· W	8	
d d	8	
hh	3	
DistanceFromSam	iples 3	
🖻 🖬 Sample	🔤 Alq3_01.xyz	
🖃 Position		
⊤ ⊢×	0	
y	0	
ź	0	
🖻 - Rotation		
alpha	0	
beta	0	
gamma	0	
🖻 Size		
W	10.8995	
d	9.7054	
h	6.9825	
🖻 - Property		
young	76.5	
- poisson	0.22	
🦾 hamaker	50	

シミュレーション計算・探針ポイント位置

Setup DFTB Property Value PTB STS ITB STS ITB STS Constant/Leight Ith colspan="2">Constant/Leight Ith colspan="2">Ith colspan="2"	Project Faitor	<u>×</u>
property Value mode DFTE STS title Office stating Conductance pentacene two_body parameter folder two_body parameters stm_mode ConstantHeight tip amplitude 160.00000	Setup DFTB	
mode DFTB_STS title Offsee state of conductance pentacene two body parameter folder two body parameters stm_mode ConstantHeight the - amplitude 16000000	property	value
two body parameter folder two body parameters stm_mode ConstantHeight top amplitude 16000000 - k cartilever 4100000 - resonant_freq 17200000 - Ndiv 64 - Y 64 - Y 64 - Y 64 - Y 64 - TolForce 10 - TolForce 10 - TolForce 10 - TolForce 10 - MaxIter 0 - MaxIter 100 - TolForce 10 - TolForce 10 - Broyden param 100 - MaxIter 100 - TolForegy 01 - output_eigenvalue off - Hamaker_const 022000 - Hamaker_const 022000 - Broyden param 020000 - Hamaker_const 022000 - aex_angle 120000 - Hamaker_const 022000 - set point 5 - TolCurr 010000 -	- mode	DFTB_STS
two body parameter folder two body parameters stm_mode ConstantHeight tip amplitude 16000000 → k cantilever 41,00000 → Ndiv 64 → Y 64 → Z 15 C Gparam 0 → MaxIter 0 → TolEnergy 0,001 → traipoint number 10 Broyden param 10 → MaxIter 0,00000 → traipoint number 10 → Broyden param 10 → MaxIter 150 → TolEnergy 0,11 → displacement 0,10000 → traipoint number 10 Broyden param - → MaxIter 150 → top highest_adsorbed_molecule 0,00000 → Hamaker_const 0,00000 → height of highest_adsorbed_molecule 0,00000 → hawker_const 50 → top height 50 → top height 50 → output_dos <t< td=""><td>title</td><td>differential_conductance_pentacene</td></t<>	title	differential_conductance_pentacene
■ stm_mode ConstantHeight ■ tip 160.00000 ■ kc-antilever 41.0000 ■ resonant_freq 172.00000 ■ Ndiv 64 ■ Y 64 ■ TolForce 10 ■ TolEnergy 0.001 ■ displacement 0.10000 ■ trial point number 100 ■ output eigenvalue off ■ tip shape conical ■ tip shape conical ■ tip shape conical ■ tip shape conical ■ tip shape 100000 ■ tip shape 100000 ■ fockaram 0 ■ fou	w two_body_parameter_folder	two_body_parameters
□ maplitude 160.00000 ↓ k_cantilever 41.00000 □ Ndiv 64 ↓ Y 64 □ CG.param 0 ↓ MaxIter 0 ↓ TolEnergy 0.001 ↓ displacement 0.10000 ↓ trippint_number 10 □ Broyden param 0 ↓ displacement 0.10000 ↓ trippint_number 10 □ Broyden param 0 ↓ MaxIter 150 ↓ tigenshitest_adsorbed_molecule 0.00000 ↓ Hamaker const 0.22000 ↓ paex_angle 1.00000 ↓ Hamaker const 0.22000 ↓ paex_angle 1.00000 ↓ Hamaker const 0.22000 ↓ paex 1.00000 ↓ Hamaker const 0.20000 ↓ top top ↓ Hamaker const 0.20000 ↓	stm_mode	ConstantHeight
→ amplitude 1000000 → Resonant freq 172,00000 → Ndw 64 → Y 64 → Z 15 → Maxter 0 → TolForce 1.0 → TolForce 1.0 → displacement 0.10000 → trial point number 10 → Broyden param - → Maxter 150 → TolForce 0.1 → Maxter 150 → TolForcey 0.1 → Maxter 150 → TolForcey 0.1 → output_eicenvalue off → Fydw conical → Hamaker_const 0.22000 → apex_angle 120000 → trip_shape conical → delta_z 0.20000 → set point 5 → TolCurr 0.10000 → radus_of_tip_apex 1.00000 → basinum -5 → Ndiv kpoints 6 > DoS o → Ma	Ģ∼tip	4 00 00000
→ R. Cantilever 41,0000 → Ndiv 64 → X 64 → Y 64 → Z 15 → CG, param 0 → MaxIter 0 → TolEnergy 0.001 → trial point number 10 → Broyden param - → MaxIter 10 → Broyden param - → MaxIter 150 → TolEnergy 0.1 → MaxIter 150 → TolEnergy 0.1 → MaxIter 150 → TolEnergy 0.1 → auxIter 150 → TolEnergy 0.1 → auxIter 150 → Hamaker const 0.22000 → Hamaker const 0.22000 → aex angle 100000 → Hamaker const 0.22000 → set point 50 → tolking of tip paex 1.00000 → aximum -5 → Maxiter 150 → tolking 6 → tolking 0 → t	amplitude	11,00000
□ - Ndiv 64 □ - Y 64 □ - Z 15 □ - Col Param 0 □ - TolForce 1.0 □ - TolForce 0.1 □ - TolForce 0.1 □ - TolForce 0.1 □ - TolForce 0.1 □ - TolForce 0.100000 □ - Hasker const 022000 □ - apex angle 1000000 □ - trains of tip.apex 1000000 □ - trains of tip.apex 0 □ - TolCurr 0.10000 □ - TolFore 0 □ - TolFore	K_cantilever	41.00000
□ Nulv 64 □ Y 64 □ 2 15 □ OGC param 0 10000 □ TolForce 1.0 10000 □ TolEnergy 0.001 10000 □ trial point number 10 10 □ Broyden param 150 10 □ output eigenvalue off 10 □ bigshape conical 100000 □ Hankler const 022000 22000 □ apex angle 120,000 100000 □ redhaz 020000 100000 □ redhaz 020000 100000 □ redhaz 020000 100000 □ redhaz 020000 100000 □ maximum 50 100000 □ □ 0 10000 □ maximum -6 100000 □ minimum<		172.00000
Y 64 Z 15 CG.param 0 TolForce 10 TolEnergy 0.001 displacement 0.10000 trial point number 10 Broyden param		64
□ CG.param Image: Strain S		64
CG param 0 MaxIter 0 TolEnerey 0.001 displacement 0.10000 trial point number 10 Broyden param		15
Imaxiter 0 Imaxiter 10 Imaxiter 100000 Imaxiter 100 Imaxiter <t< td=""><td>E-CG param</td><td>10</td></t<>	E-CG param	10
→ TolForce 1.0 → TolEnergy 0.001 → TolEnergy 0.001 → TolEnergy 0.001 → TolEnergy 0.000 → TolEnergy 0.1 → MaxIter 150 → TolEnergy 0.1 → Unit state off → Ferdback param conical → height of highest_adsorbed_molecule 0.00000 → Hamaker_const 0.22000 → apex_angle 120.000 → tip height 100000 → radius of tip_apex 1.00000 → radius of tip_apex 1.00000 → set point 5 → TolCurr 0.10000 → MaxIter 150 ● tip bias voltage -5 → TolCurr 0.10000 → MaxIter 150 ● tip charge_neutrality 100 → maximum 6 → Ndiv 1024 ← electron_temperature 50 ● tip charge_neutrality -01 → maximum 010000 → Ndiv 4 ● translational_v	MaxIter	Π
→ TolEnergy 0.001 → displacement 0.10000 → trail point number 10 ■ MaxIter 150 → TolEnergy 0.1 → output eigenvalue off ● Fvdw conical → height of highest adsorbed molecule 0.00000 → Hanaker const 0.22000 → apex_angle 120.000 → tip briefst 100000 → radius of tip apex 1.00000 → radius of tip apex 1.00000 → apex_angle 120.000 → tip bias 0.10000 → apex_angle 120.000 → est point 5 → TolCurr 0.10000 → Maxiter 150 ■ tip bias voltage -5 → maximum -6 → Ndiv 400 → Ndiv 1024 ← lectron temperature 50 ● tip charge_neutrality -01 → maximum -01 → maximum 010000 → Ndiv 4 ● translational vector -7 ● a </td <td>TolForce</td> <td>ĭn</td>	TolForce	ĭn
displacement 0.10000 trial point number 10 Broyden param 150 TolEnergy 0.1 output eigenvalue off Frydw conical Height of highest adsorbed molecule 0.00000 Hamaker const 0.22000 Height of highest adsorbed molecule 0.00000 Hamaker const 0.22000 Height of highest adsorbed molecule 0.00000 Hamaker const 0.22000 Height of highest adsorbed molecule 0.00000 Hamaker const 0.22000 Height of highest adsorbed molecule 0.00000 Hamaker const 0.22000 Height of highest adsorbed molecule 0.00000 Hamaker const 0.2000 Height of highest adsorbed molecule 0.00000 Holdit (Liphist) 0	TolEnergy	0.001
trial point number 10 → Broyden param 150 → TolEnergy 0.1 → output eigenvalue off → Fvdw conical → height of highest adsorbed molecule 0.00000 → adius of tip apex 1.00000 → radius of tip apex 1.00000 → maximum 0.10000 → maximum 0.10000 → Maximum -5 → output dos on → maximum -5 → output dos on → maximum -0.1 → maximum -0.1 → maximum 0	displacement	0.10000
Broyden param 150 MaxIter 150 Output_eigenvalue off Bryden for highest_adsorbed_molecule 000000 Height of highest_adsorbed_molecule 000000 Height of highest_adsorbed_molecule 000000 Hamaker const 0.22000 Height of highest_adsorbed_molecule 000000 Hamaker const 0.22000 Height of highest_adsorbed_molecule 0.00000 Height of highest_adsorbed_molecule 0.0000 Height of hight of highest_adsorbed_molecule 0.0000 Height of hight of hig	trial point number	10
MaxTer 150 TolEnergy 0.1 output eigenvalue off Fydw tip_shape conical height of highest_adsorbed_molecule 0.00000 Hamaker const 0.22000 apex_angle 120.000 apex_angle 120.000 adus of tip_apex 1.00000 adus of tip_apex 0.10000 maximum -5 output_dos on output_dos on	🖻 🖻 Broyden param	
□ TolEnergy 0.1 □ output_eigenvalue off □ Fvdw conical □ height_of highest_adsorbed_molecule 0.00000 □ Hamaker_const 0.22000 □ apex_angle 120.000 □ tip height 1000.00 □ redus_of_tip_apex 1.00000 □ redus_tors 6 □ ruty 0 □ ruty 0 □ ruty 0.1 □ ruty 0 □ ruty 0 <	MaxIter	150
→ output eigenvalue off → Fivdw conical → height of highest_adsorbed_molecule 0.00000 → Hamaker const 0.22000 → amaker const 0.22000 → amaker const 0.2000 → angle 120.000 → angles 1.00000 → set point 5 → Top bias voltage -5 → maximum -5 → Mdiv 4 → output_dos on → maximum 6 → output_dos on → maximum 0.10000 → Ndiv 4 → translational_vector -2 → X 0 → Z	- TolEnergy	0.1
□ tip_shape conical □ height of highest_adsorbed_molecule 0.00000 □ apex_angle 120000 □ apex_angle 120000 □ radius_of_tip_apex 1.00000 □ redback_param 0.20000 □ dedkt_param 0.20000 □ set_point 5 □ TolCurr 0.10000 □ MaxIter 150 □ top_solutage -5 □ minimum -5 □ output_dos on □ output_dos on □ output_dos on □ minimum -0.1 □ minimum <	- output_eigenvalue	off
Image: tip_shape conical Image: height of highest_adsorbed_molecule 0.00000 Image: marker_const 0.22000 Image: angle 120.000 Image: marker_const 0.20000 Image: marker_const 0.200000 Image: marker_const 0.200000 Image: marker_const 0.20000000 Image: marker_const 0.2000000000 <	🗇 Fvdw	
→ height of highest_adsorbed_molecule 0.00000 → Hamaker_const 0.22000 → apex_angle 120.000 ↓ tip height 1000.00 ↓ radius of tip apex 1.00000 ↓ radius of tip apex 0.20000 ↓ radius of tip apex 1.00000 ↓ radius of tip apex 0.20000 ↓ radius of tip apex 0.20000 ↓ set point 5 ↓ Tip bias_voltage -5 ↓ maximum -5 ↓ maximum 5 ↓ Ndiv 100 ▶ Ndiv 1024 ↓ Ndiv 1024 ↓ Ndiv 1024 ↓ Ndiv 1024 ↓ maximum 0.10000 ↓ Ndiv 1024 ↓ electron_temperature 50 ➡ tip charge neutrality - ↓ minimum -0.1 ↓ maximum 0.10000 ↓ Ndiv 4 ➡ translational_vector - ↓ a 0 ↓ Y 0 ↓ Y 0 ↓ Y 0	tip_shape	conical
Hamaker const 0.22000 apex_angle 120,000 TolCur 100000 MaxIter 5 TolCurr 0,10000 MaxIter 150 Image: set point 5 Image: minimum -5 Image: minimum -5 Image: minimum -5 Image: minimum -6 Image: minimum 6 Image: minimum 6 Image: minimum 6 Image: minimum -6 Image: minimum 6 Image: minimum 6 Image: minimum 6 Image: minimum -0.1 Image: minimum 0.10000 Image: minimum 0.10000 Image: minimum 0.10000 Image: minimum 0.1 Image: mi	height_of_highest_adsorbed_molecule	0.00000
→ apex_angle 120.000 → tip_height 100000 → readius_of_tip_apex 100000 → delta_z 0.20000 → delta_z 0.20000 → delta_z 0.20000 → set_point 5 → TolCurr 0.10000 MaxIter 150 ⊖ tip_bias_voltage → → maximum -5 → maximum -6 → maximum -6 → maximum 6 → Ndiv 1024 → electron_temperature 50 ⊖ tip_charge_neutrality → → maximum -0.1 → maximum 0.10000 → Ndiv 1024 → electron_temperature 50 ⊖ tip_charge_neutrality → → maximum -0.1 → maximum -0.1 → TX 0 → X 0 → Z 0 → Z 0 → Z 0 → Z 0<	Hamaker_const	0.22000
— tip height 100000 — radius_of_tip_apex 1.00000 — madius_of_tip_apex 0.20000 — set_point 5 — TolCurr 0.10000 — MaxIter 150 — TolCurr 0.10000 — MaxIter 150 — minimum — 5 — maximum — 5 — Mdiv 400 — Ndiv 1024 — electron_temperature 50 — tip_charge_neutrality — minimum — maximum 0.10000 — Ndiv 1024 — electron_temperature 50 — translational_vector — TX 0 — Z 0 — Z 0 — Z 0 — Z 0 — Z 0 — Y <td>apex_angle</td> <td>120.000</td>	apex_angle	120.000
□ - radus of tip_apex 1.00000 □ - feedback param 0.20000 □ - set point 5 □ - TolCurr 0.10000 □ - MaxIter 150 □ - tip_bias_voltage -5 □ - maximum -5 □ - Ndiv 6 □ - Ndiv kpoints 6 □ - output_dos on □ - minimum -6 □ - maximum 6 □ - Ndiv 1024 □ - electron_temperature 50 □ - tip_charge_neutrality -01 □ - maximum 0.10000 □ Ndiv 4 □ - translational_vector -7 □ - A 100 □ - Y 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Y 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 <td>tip_height</td> <td>1000.00</td>	tip_height	1000.00
□-feedback param 0.20000 □-delta_2 0.10000 □-TolCurr 0.10000 □-MaxIter 150 □-tip bias voltage -5 □-minimum -5 □-Ndiv 100 □-Ndiv kpoints 6 □-DoS 0 □-nutput_dos on □-minimum -6 □-minimum 6 □-Ndiv 1024 □-electron_temperature 50 □-tip charge neutrality -0.1 □-maximum 0.10000 □-winimum -0.2 □-translational_vector -7 □-a 100 □-y 0 □-y 100.000000	radius_of_tip_apex	1.00000
→ delta_z 0.20000 → set point 5 → TolCurr 0.10000 → MaxIter 150 ⊖ tip_bias_voltage -5 → maximum -5 → Ndiv 100 → Ndiv 6 → DoS 0 → output_dos on → minimum -6 → Ndiv 1024 → electron_temperature 50 ⊖ tip_charge_neutrality -0.1 → maximum 0.10000 → Ndiv 4 ⊖ translational_vector -3 → X 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z </td <td>📄 feedback_param</td> <td></td>	📄 feedback_param	
→ set point b → TolCurr 0.10000 → MaxIter 150 → minimum -5 → maximum 5 → Ndiv 100 → Ndiv 100 → Ndiv 6 → DoS 0 → output_dos on → maximum 6 → Ndiv 1024 → electron_temperature 50 → translational_vector -0.1 → Ndiv 4 → translational_vector -7 → Z 0 → Z 0 → Y 0 → Z 0 → Y 0 → Z 0 → Y 0 → Z 0 → Y 0 → Z 0 → Y 0 → Z 0 → Y 0 → Z 0 → Y 0 → Z 0 → Y 0 → Z 0 →	delta_z	0.20000
→ TolCurr 0.10000 → MaxIter 150 → minimum -5 → maximum 000 → Ndiv 100 → Ndiv 6 → DoS 0 → output_dos 0 → minimum -6 → maximum 6 → Ndiv 1024 → electron_temperature 50 ➡ tip_charge_neutrality -01 → minimum -0.1 → Raimum 0.10000 → Ndiv 4 → translational_vector -7 → A 100 → Y 0 ∠Z 0 → Y 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0	set point	5
→ Maxter 150	- TolCurr	0.10000
□ tip_blas_voltage □ minimum □ naximum □ Ndiv □ Ndiv □ Ndiv □ Ndiv □ non □	MaxIter	150
Immunum -5 Immunum 5 Immunum 100 Immunum 6 Immunum -6 Immunum -7 Immunum -0.1 Immunum -1.1 Immunum -1.1 Immunum -1.1 Immunum	- tip_bias_voitage	F
Imaximum 100 Imaximum 100 Imaximum 6 Imaximum -6 Imaximum 6 Imaximum 6 Imaximum 6 Imaximum 6 Imaximum 1024 Imaximum -0.1 Imaximum 0.10000 Imaximum 0.100000 Imaximum 0.100000 Imaximum 0.100000 Imaximum 0.1000000 Imaximum 0.1000000 Imaximum 0.1000000 Imaximum 0.1000000000 Imaximum 0.100000000000000000000000000000000000	minimum	-0
Noiv Noiv → Noiv 6 → output_dos on → minimum -6 → maximum 6 → Ndiv 1024 → electron_temperature 50 ➡ tip_charge_neutrality -0.1 → maximum 0.100000 → Ndiv 4 ➡ translational_vector -3 → X 100 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 100.000000 → Z 0 → Z	Maximum	0
→ Noty Leponts 0 → DoS on → minimum -6 → maximum 6 → Ndiv 1024 → electron_temperature 50 → tip_charge_neutrality -0.1 → maximum 0.10000 → Ndiv 4 → translational_vector -7 → a 100 → Y 0 ∠ 0 → Z 0 → Y 100 → Y 100 → Z 0 → Y 100 → Y 0 → Y 0 → Y 0 → Y 0 → OpenMP_threads 4 → Output	Ndiu kasinta	e .
□ output_dos on □ minimum -6 □ maximum 6 □ Ndiv 1024 □ electron_temperature 50 □ tip_charge_neutrality -0.1 □ maximum 0.10000 □ Maximum 0.10000 □ Ndiv 4 □ translational_vector -7 □ - Y 0 □ - Y 0 □ - Z 0 □ - Y 0 □ - Z 0 □ - Y 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 100.000000 □ - Z 0 □ - Z 100.000000 □ - Z 100.000000 □ - Z </td <td></td> <td>0</td>		0
→ minimum −6 → maximum 6 → Ndiv 1024 → electron_temperature 50 □→ tip_charge_neutrality −0.1 → minimum −0.1 → maximum 0.10000 → Ndiv 4 → translational_vector − □→ a 100 → Y 0 ∠ 0 → Z 0 □→ C 0 □→ Z 100.000000		on
Imaximum 0 Ndiv 1024 electron_temperature 50 tip_charge_neutrality -0.1 minimum -0.1 maximum 0.10000 Ndiv 4 translational_vector -a -a 100 Y 0 -Z 0 -b 0 -Y 100 -Z 0 -Z 100.000000 -OpenMP_threads 4	minimum	-6
Index motion 0 Image: motion 1024 Image: motion 50 Image: motion -0.1 Image: motion -0.1 Image: motion 0.10000 Image: motion 0.10000 Image: motion 0.10000 Image: motion 0.10000 Image: motion 0 Image: motion 0<	maximum	6
→electron_temperature 50 → tip_charge_neutrality -0.1 → minimum 0.10000 → Maximum 0.10000 → Ndiv 4 → translational_vector	Ndiv	1024
→ tip charge neutrality −0.1 → maximum 0.10000 → Ndiv 4 → translational_vector 0 → a 100 → Y 0 ∠Z 0 → -Y 100 ∠Z 0 → -Y 0 ∠Z 0 → -Y 0 ∠Z 0 → -Y 0 → -Y 0 ∠Z 0 → -Y 0 ∠Z 100.00000 → Z 100.00000 → -Y 0 ∠Z 100.00000 → -Y 0 → -Y 0 → -Y 0 → -Y 0	electron temperature	50
-0.1 -0.1	En tip charge neutrality	00
maximum 0.10000 Ndiv 4 translational_vector □ -X □ -X -Y 0 -Z 0 □ -Y □ -Y 0 -Y □ -Y 0 -Y -Y 0 -Y 00 -Y 0 -	minimum	-01
Image: Ndive the second se	maximum	0.10000
translational_vector	Ndiv	4
	🚊 translational vector	
-X 100 -Y 0 -Z 0 -X 0 -Y 100 -Y 0 -Z 0 -Y 100 -Y 0 -Z 0 -Y 0 -Z 100.000000 -Y 0 -Z 100.000000 -OpenMP_threads 4 + Output •	i ⊡…a	
Y 0 Y 0 X 0	II T I-X	100
Z	- Y	0
□ X 0 Y 100 -Z 0 □	Z	0
	j j.−b	
Y 100 Y 0 Y 0 Y 0 Y 100.00000 Y 0		0
	Y	100
C 0 → X 0 → Y 0 Z 100.00000 → OpenMP_threads 4 → Output	L L Z	0
	⊡∽c	
	-X	0
	I Y	0
OpenMP_threads 4 Output Output	– Z	100.00000
Output	OpenMP_threads	4
	⊞ Output	
	4	E E E E E E E E E E E E E E E E E E E

スペクトル曲線

電圧・電流曲線

類例の設定条件

5・DFTB(量子論的SPM像シミュレータ)FreqShift(周波数シフト画像シミュレーション)計算事例④

●DFTB : FreqShift (周波数シフト画像シミュレーション) Alq3

計算モード識別番号:[DFTB_FreqShift_Organic_005]

ソルバ・モード・計算例アドレス https://www.aasri.jp/pub/spm/project_samples/DFTB/FreqShift/DFTB_FreqShift.php

分類:DFTB、周波数シフト画像シミュレーション、µmオーダー、有機半導体

事例紹介ページを下図に示します。

事例紹介ページ1

事例紹介ページ2

本事例は、Alq3を、DFTB 周波数シフト AFM 画像でシミュレートします。

スキャンエリアの設定は有効です。周期境界は考慮せず、モノマーとして解析します。探針は作成済みデータ「tip_si4.xyz」を用います。

「量子論的 SPM 像シミュレータ」での計算モードは、DFTB_AFM, DFTB_STM, DFTB_STS, DFTB_KPFM, DFTB_BAND が選択できます。それぞれ、原子間力顕 微鏡像計算、トンネル電流顕微鏡像計算、トンネル電流分光計算、ケルビンプローブ力顕微鏡像計算、試料のバンド構造計算に対応します。

本紹介事例は、「DFTB_AFM:原子間力顕微鏡(周波数シフト)像計算」です。各原子上に働く力は、ヘルマン・ファインマン力として、全エネルギーを 各原子位置について微分し、得ることができます。得られた原子間力を使用して、古典力場法で用いた周波数シフトの式へ代入することで、周波数シフ トを得ることができます。AFM 像の周波数シフトの計算では、実験値と直接比較を可能とするため、マクロな物体としてのファンデルワールス力を現象 論的に考慮しています。本計算事例の入力条件について記載します。

試料探針間距離は、約「4.35916Å」、スキャンエリアは「W12Å×D12Å×H3.5Å」と設定されています。TIPバイアス電圧は「4V」と設定されています。 試料モデルの回転が設定されています。探針振動の共鳴周波数を「170KHz」と設定しています。

Alq3は、電子輸送層および発光層として用いられることが多い物質です。

以下に、紹介事例のセットアップ条件(下左図)とシミュレーション・モデルとスキャンエリアをTOP(中央上図)、SIDE(右上図)、FRONT(中央下図)、 俯瞰(右下図)として示します。

事例モデルのセットアップ条件

FRONT

俯瞰

以下に、紹介事例の設定条件(下左図)とシミュレーション結果をTOP(右上図)、SIDE(中央上図)、FRONT(右下図)、俯瞰(中央下図)として示します。

Project Editor	×
Setup DFTB	
property	value
mode	DFTB AFM
- title	Alg3
two_body_parameter_folder	two_body_parameters
🖨 tip	
amplitude	160
k_cantilever	170
resonant_treq	170
	40
Ŷ	40
L Lż	10
🖻 - CG param	
MaxIter	0
TolForce	1
TolEnergy	0.001
displacement	0.1
trial_point_number	10
Maultar	90
	10
output eigenvalue	off
En Evda	011
tip shape	conical
height of highest adsorbed molecule	0.00000
Hamaker_const	0.22000
apex_angle	160
tip_height	1000.00
radius_of_tip_apex	1.00000
□ tip_bias_voltage	
minimum	4
Main Main	100
Ndiv kpoints	4
electron temperature	50
E tip charge neutrality	
minimum	-0.1
maximum	0.10000
- Ndiv	4
📮 translational_vector	
	100
- X	100
	0
	0
	0
Ϋ́	100
, L Ż	0
É-c	
-X	0
<u> </u>	0
Z	100.00000
Solver_type	GPU 4
Content Content	4
4	•

量子論的 SPM シミュレータの AFM 像計算では、探針と試料表面が接触しない非接触 AFM(NC-AFM)の計算を行う。非接触 AFM では探針を振動させなが ら試料表面を走査し、探針が試料表面から受ける力によって生じる振動数や位相の変化を画像化する。振動の変化を計測する方法としては、振動の振幅 の変化を計測する AM-AFM と振動の共鳴周波数の変化を計測する FM-AFM の二つがある。FM-AFM の方がより感度が高く、高い分解能での観測が可能で あると言われる。量子論的 SPM シミュレータでは振動数の変化を感知する FM-AFM を扱い、周波数シフト像を計算して出力する。(SPMガイドブック) 6 · DFTB_STM(量子論的SPM像シミュレータ)ConstHeightSTM(高さ一定STM画像シミュレーション)

計算事例15、16

●DFTB : ConstHeightSTM (高さ一定 STM 画像シミュレーション) Ir (piq)3

計算モード識別番号: [DFTB_ConstHeightSTM_Organic_013]

ソルバ・モード・計算例アドレス <u>https://www.aasri.jp/pub/spm/project_samples/DFTB/ConstHeightSTM/DFTB_ConstHeightSTM.php</u>

分類:DFTB、高さ一定STM画像シミュレーション、μmオーダー、有機半導体 事例紹介ページを下図に示します。

事例紹介ページ2

本事例は、Ir(piq)3を、DFTB高さ一定のトンネル電流像でシミュレートします。探針は作成済みデータ「tip_si4.xyz」を用います。スキャンエリアの設定は有効です。シミュレーションはモノマーとして解析されます。

本計算事例の入力条件について記載します。「STM_MODE」は「ConstantHeight」 (Default、指定のない場合:探針の高さ一定モード)に設定しています。並列化処理設定を行っています(2スレッド対応)。バイアス電圧+4.0Vとバイアス電圧-4.0Vでの計算を設定条件で行わせました。 試料探針間距離は、約「1.2734Å」、スキャンエリアは「W18Å×D16Å×H0.0Å」と設定されています。 試料バイアス電圧の正負で、明確にSTM像の明暗が反転する事(半導体としての性質)がわかります(バンドギャップの再現)。 以下に、紹介事例のセットアップ条件(下左図)とシミュレーション・モデルとスキャンエリアを TOP、SIDE、FRONT、俯瞰として示します。

俯瞰

FRONT

事例モデルのセットアップ条件

TIPバイアス電圧―4Vでの、シミュレーション結果
・Rainbow色表示モデルをSIDE(左上図)、
TOP(右上図)、FRONT(右下図)、俯瞰図(左下図)として示します。

計算モード識別(番号)プロジェクト名: project_file_for_beginners_version_DFTB_ConstHeightSTM_Organic_013_test_minus4V

類例: DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるIr(piq)3分子の検証 計算事例 ①

計算モード識別(番号) プロジェクト名: <u>project_file_for_beginners_version_DFTB_STS__Organic_013_center</u>

参考事例モデルのセットアップ条件

Ir(piq)3分子において、下図探針ポイント位置での、走査トンネル分光シミュレーションを 行いました。電圧・電流曲線とスペクトル曲線((dI/dV)/(I/V))を示します。-2.0V近辺および +2.5V近辺に、急峻な変化があるグラフが得られています。 バンドギャップの存在を再現していることがわかります。

シミュレーション計算・探針ポイント位置

Project Editor		×
Setup DFTB		
property	value	
mode	DFTB S	rs
- title	Ir_piq_3	
im two_body_parameter_folder	two_body	parameters
en op	10	
k cantilever	40	
- resonant_freq	170	
🖻 Ndiv	~~	
- Č	60	
	00	
⊑ CG param	Ŭ	
MaxIter	0	
TolForce	1	
lionlocoment	0.001	
trial point number	10	
E- Broyden_param	10	
MaxIter	30	
- TolEnergy	10	
im output_eigenvalue	off	
im tip shape	conical	
height_of_highest_adsorbed_molecule	0.00000	
Hamaker_const	0.22000	
- apex_angle	160	
radius of tip apex	1 000.00	
En tip bias voltage	1.00000	
minimum	-4	
maximum	4	バイアス
Mdiu kasinta		() L L
	50	させます
⊡ tip charge neutrality	00 (
minimum	-0.1	
- maximum	0.10000	
 Molv translational vestor 	4	
i T ⊢x	100	
<u> </u>	0	
I L L∞Z	0	
	0	
Ϋ́	100	
L Ž	0	
E⊢c ,		
X	0	
	100	
solver type	CPU	
- OpenMP_threads	2	
⊡ Output		
4		•
· · · · · · · · · · · · · · · · · · ·		

16-14-12-10-(^/!)/(^P/!P) 8-6-4 G G 2 and the second de a P Sand Barbarana ALL AND n--2-1 -2 2 -3 v_tip (v)

スペクトル曲線

設定条件

電圧・電流曲線

Ir (piq) 3 について

CAS番号 435293-93-9 分子式(Hill方式) C45H30IrN3 分子量 804.96
トリス[1-フェニルイソキノリン-C2,N]イリジウム(III)
Tris[1-phenylisoquinoline-C2,N]iridium(III)
別名: Ir(piq)3, トリス[1-フェニルイソキノリナート-C2,N]イリジウム(III)
有機EL(0LED)三重項発光体(赤色、燐光発光)
イリジウム錯体(blue、green、redが揃っている)、遷移金属錯体

分子レベルの発光では発光過程の始状態と終状態のスピン多重度が同じものを「蛍光」といい、 項間交差により同じでなくなるものを「燐光」という。スピン多重度が異なる遷移は 禁制であるから寿命が長くなる。(wikipedia)

・蛍光・・・蛍光色、蛍光増白剤や蛍光不可視インク(普段は無色透明でブラックライトなどの短波長光照射中に発光発色)、プラズマディスプレ イなどのモニター・蛍光灯・バックライト(冷陰極管)・ルミライト印刷の発光に使われる(無機)蛍光体(普段は無色で短波長光照射で発光発色)、生物 実験(染色)での蛍光色素など。

・燐光(蓄光)・・・蓄光塗料(夜光塗料)、避難誘導標識など。

7 ・DFTB_STM (量子論的SPM像シミュレータ) ConstHeightSTM (高さ一定STM画像シミュレーション)

計算事例18、19

事例紹介ページ

事例紹介ページ2

本事例は、HOPG(1原子層なのでグラフェン)を、高さ一定のトンネル電流像でシミュレートします。探針は作成済みデータ「tip_si4.xyz」を用います。 スキャンエリアの設定は有効です。周期境界を考慮しないので、シミュレーションはモノマーとして解析されます。本計算事例の入力条件について記載 します。「STM_MODE」は「ConstantHeight」 (Default、指定のない場合:探針の高さ一定モード)に設定しています。並列化処理設定を行ってい ます(2スレッド対応)。バイアス電圧 +4.0V とバイアス電圧 -4.0V での計算を設定例条件で行わせました。 試料探針間距離は、約「1.3838Å」、スキャンエリアは「W10Å×D10Å×H0.0Å」と設定されています。 以下に、紹介事例のセットアップ条件(下左図)とシミュレーション・モデルとスキャンエリアを TOP、SIDE、FRONT、俯瞰として示します。

事例モデルのセットアップ条件

SIDE

TIPバイアス電圧4Vでの、シミュレーション結果・Rainbow色表示モデルをSIDE(左上図)、TOP(右上図)、FRONT(右下図)、俯瞰図(左下図) として示します。

1.34e+005

1.34e+005

current

5.0

current

5.0

TIPバイアス電圧―4Vでの、シミュレーション結果
・Rainbow色表示モデルをSIDE(左上図)、
TOP(右上図)、FRONT(右下図)、俯瞰図(左下図)
として示します。

試料バイアス電圧の正負で、明確にSTM像の 明暗が反転する事(半導体としての性質)が わかります(バンドギャップの再現)。

類例:DFTB_STS(量子論的SPM像シミュレータ・走査トンネル分光)によるHOPGの検証 計算事例@

計算モード識別(番号)プロジェクト名: project_file_for_beginners_version_DFTB_STS_Inorganic_017_center

シミュレーション計算・探針ポイント位置

参考事例モデルのセットアップ条件

HOPGにおいて、上図探針ポイント位置での、走査トンネル分光シミュレーションを行いました。電圧・電流曲線とスペクトル曲線((dI/dV)/(I/V))を示します。-2.7V近辺と+2.2V近辺に、急峻な変化があるグラフが得られています。±2V近辺を境に、電子の局所状態密度が大きく変化する事がわかり、バンドギャップの存在を再現していることがわかります。

Setup DFTB property yalue Image: title HOPG How body parameter folder HOPG Image: title Homge: title Image: title H	Project Editor	×
property yalue mode DFTB_STS HOPG two_body_parameter_folder two_body_parameter_folder two_body_parameters tip -amplitude 10	Setup DFTB	
→ mode DFTB STS HUPG → title HUPG + two body parameter folder two body parameters → tip → amplitude 10 → k_cantilever 40 → resonant freq 170 → Ndiv 60 → Z 0 → CG param 0 → MaxIter 0 → TolEnergy 0.001 → TolEnergy 10 → Tolenergy 100 → Tolenergy 100 → Fvdw 0	property	value
Ittle HOPG Ittle Ittle Ittle <td>mode</td> <td>DFTB_STS</td>	mode	DFTB_STS
Image two_body parameter folder two_body parameters Image 10	- title	HOPG
□ - tip	wo_body_parameter_folder	two_body_parameters
→ amplitude 10 → k_cantilever 40 → resonant_freq 170 → Ndiv 60 → Z 0 ⊖ CG_param 0 → TolForce 1 → TolForce 1 → TolForce 1 → TolForce 10 → TolForce 10 → TolEnergy 00011 → displacement 0.1 → TolEnergy 00010 → Bayden param 0 → MaxIter 30 → TolEnergy 10 → output_eigenvalue off → TolEnergy 10 → output_eigenvalue off → trap.shape conical → heicht of, hiehest_adsorbed_molecule 0.00000 → Hamaker_const 0.22000 → apex_anele 160 → trap.sinnum -4 → maximum 4 → electron_temperature 50 ⊕ translational_vector - → X 0	⊕ tip	
	amplitude	10
Image: Second	k_cantilever	40
Image: Second	resonant_freq	170
Y 60 Y 0		¢0
Imaximum 000 Imaximum 0		00 40
	7	00
OC_Data MaxIter 0 TolForce 1 TolForce 1 TolEnergy 0.001 displacement 0.1 MaxIter 30 TolEnergy 10 Broyden param 30 MaxIter 30 TolEnergy 10 Output_eigenvalue off Evide off Fydw conical Hamaker_const 0.22000 apex_angle 160 Hamaker_const 0.22000 apex_angle 160 Hip height 1000000 Trailus of tip_apex 1.00000 Tip height 1000000 Maxiter 50 Evide -4 Imaximum 4 Vision 4 Imaximum -0.1 Maxiv 4 Imaximum 0.10000 Ndiv 4 Imaximum 0 Z 0	Line CG param	0
Image: construction of the second	MayIter	0
Image: Second		1
Image: construction of the second	TolFpergy	0.001
<pre>trial_point_number 10 Broyden param MaxIter 30 TolEnergy 10 output_eigenvalue off Fvdw </pre>	- displacement	01
Broyden param 30 MaxIter 30 TolEnergy 10 output eigenvalue off Fydw conical Height of highest_adsorbed_molecule 0.00000 Hamaker_const 0.22000 Hamaker_const 100000 Hamaker_const 4 Hamaker_const 4 Hamaker_const 4 Height 100000 Holiv 4 Height 100 Height 100 Height 100 Height 100 Height 100 Height 100 Heig	trial point number	10
	🖻 Broyden param	
Image: Second	MaxIter	30
	TolEnergy	10
Fvdw conical	output_eigenvalue	off
	🔁 🗗 Fvdw	
height_of_highest_adsorbed_molecule 0.00000 Hamaker_const 0.22000 apex_angle 160 tip_height 1000.00 radius_of_tip_apex 1.00000 radius_of_tip_apex 1.00000 radius_of_tip_apex 1.00000 radius_of_tip_apex 1.00000 radius_of_tip_apex 1.00000 radius_of_tip_apex 1.00000	tip_shape	conical
Hamaker_const 0.22000 apex_angle 160 tip_height 1000.00 rdius_of_tip_apex 1.00000 tip_bias_voltage -4 minimum -4 minimum 4 Ndiv_kpoints 4 Ndiv_kpoints 4 Ndiv_kpoints 4 Ndiv_kpoints 4	height_of_highest_adsorbed_molecule	0.00000
apex_angle 160 tip_height 1000.00 radius_of_tip_apex 1.00000 tip_bias_voltage 4 maximum -4 Maiv 100 Ndiv_kpoints 4 electron_temperature 50 tin_charge_neutrality -0.1 minimum -0.1 maximum 0.10000	Hamaker_const	0.22000
Image: tip_bright 100000 Image: tip_bias_voltage 1.00000 Image: tip_bias_voltage -4 Image: tip_minimum 4 Image: tip_hing 4 Image: tip_hing 6 Image: tip_hing 4 Image: tip_hing 6	apex_angle	160
□ radius of tip apex 1,00000 □ tip bias voltage -4 □ minimum 4 □ Ndiv 186 □ tip_charge_neutrality -0.1 □ maximum 0.10000 □ Ndiv 4 □ translational_vector -0.1 □ - X 100 □ - Y 0 □ - Z 0 □ - X 0 □ - Z 0 □ - C -X □ - C -X □ - Z 0 □ - C -X □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z 0 □ - Z	tip_height	1000.00
→ tip Dias voltage -4 → minimum 4 → Ndiv 180 → electron_temperature 50 → tip_charge_neutrality -0.1 → maximum 0.10000 → Ndiv 4 → translational_vector -4 → a 100 → Z 0 → Z 0 → X 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 0 → OpenMP_threads<	radius_of_tip_apex	1.00000
Imaximum 4 Maximum 4 Ndiv 186 Ndiv kpoints 4 electron_temperature 50 Ip_tip_charge_neutrality -0.1 minimum -0.1 maximum 0.10000 Mdiv 4 Imaximum 0.10000 Mdiv 4 Imaximum 0.10000 Mdiv 4 Imaximum 0.10000 Imaximum 0.10000 Imaximum 0.10000 Imaximum 0.10000 Imaximum 0 Imaximum 0 <		-1
Ndiv 100 Ndiv kpoints 4 electron_temperature 50	minimum	-4
Ndiv kpoints 4	- Maximum	4
Holvy points 4	Ndiv koointe	4
□ □ □ □ □ minimum −0.1 □ maximum 0.10000 □ Ndiv 4 □ translational_vector □ □ □ X 100 □ □ X 0 □ □ Z 0 □ □ Z 0 □ □ Z 0 □ □ Z 0 □ □ Z 0 □ □ Z 0 □ □ Z 0 □ □ Z 0 □ □ Z 0 □ □ Z 0 □ □ Z 100.00000 □ □ Z 100.00000 □ □ □ Z □ □ □ □ □ □ □ □ □ □ □ □ □ □ </td <td>electron temperature</td> <td>4 50</td>	electron temperature	4 50
-0.1 -0.1	En tin charge neutrality	
→ maximum 0.10000 Ndiv 4 → translational_vector → a → A → A → A → A → A → A → A → A → A → A → A → A → Z → B → Z → A → Y 0 → Z 0 → Z 0 → Z 0 → Z 0 → Z 00 → Z 00 → Z 00 → Z 0000000 → Output	minimum	-0.1
Ndiv 4 Herminian Action Action Herminian Action Hermin	maximum	0.10000
translational_vector	- Ndiv	4
□ - a 100 Y 0 Z 0 □ X 0 Y 100 X 0 X 0	🖨 translational_vector	
Image: Second system Image: Second system Image: Second system Im	i ⊡-a	
Y 0 Z 0 Y 0 Y 100 Z 0 Y 0 Y 0 Z 100,00000 Y 0 Y 0 Y 0 Y 0 Y 0 OpenMP_threads 2 P-Output V	-X	100
Image: Constraint of the second s	<u>Υ</u>	0
□ X 0 ·-Y 100 ·-Z 0 ·-X 0 ·-Y	L L L Z	0
X U Y 100 Z 0 X 0 Y 0		
Y 100 Y 0 Y		U 100
U □ - C □ - C X Y Z 100.00000 		100
		U
Y 0 Z 100.00000 Solver type CPU OpenMP_threads 2 ⊡ Output ✓		0
Z 100.00000 solver_type CPU OpenMP_threads 2 ⊕ Output		0
Solver_type CPU OpenMP_threads 2		100.00000
OpenMP_threads 2 Dutput	solver type	CPIL
Output	OpenMP threads	2
		-
	▲	•

スペクトル曲線

設定条件

• HOPGについて

高配向性熱分解グラファイト(英: Highly oriented pyrolytic graphite, HOPG)は、高純度で配向のよい人造黒鉛を指す。モザイク広がりが小さいこと、つまり個々のグラファイト微結晶の向きが互いによく一致していることが特徴である。最高品質の HOPG 試料のモザイク広がり角は 1° を下回る。 X線光学においてはモノクロメータとして使用される他、走査型プローブ顕微鏡に基板として、および拡大率校正用に用いられる。 英語では "highly ordered pyrolytic graphite" と呼ばれることもあるが、IUPAC は "highly oriented" がより望ましいとしている。 (wikipedia)

2004 年、Geim らは、高配向性 の無水グラファイト (Highly Oriented Pyrolytic Graphite, HOPG)の 表面を粘着テープで剥離し、剥離 した薄膜 の表面をさらにまた剥離 するという単純な方法でグラフェ ンの薄片を取り出すことに成功した。グラフェンはグラファイト結晶 の 1 原子面を取り出 したものといえる。室温 の電子移動度が驚くほど高かい。 → 高速トランジスタの実現に期待されている。 (グラフェンの高速トランジスタ応用への 注目と課題 家近 科学技術動向 2010 年 5 月号)

本質的には、グラフェンは半金属、あるいはバンドギャップがゼロの半導体である。 (グラフェンWiki)

グラフェンでは、すべての炭素原子が sp2 であり、炭素原子 1 個あたり 1 つのπ電子の状態が電気伝導などの物性を支配する. (カーボンナノチューブ ChemistryEducation.doc 東京大学 大学院工学系研究科丸山教授より)

8 •	本編での	SPM シミュレ	/ータにおけるソルバ	バー一覧	(事例として取上げたソルバー・モードを赤字で示しました)
-----	------	----------	------------	------	------------------------------

●:対応済	×:未対応						
V20170313	V20160722	ソルバー	モード1	モード2	モード名称	機能・その他	
•	•	CG	ncAFM-ConstZ (FreqShift)		高さ一定・ノンコンタクトモ ード(周波数シフト AFM 像)		
			ConstZ				
			ConstForce			構造最適化 AFM 像シミュレータ	
			ForceCurve				
			MinForceHeight				
			DFTB_STM	ConstantHeight	高さ一定、トンネル電流像		
			DETD STM	ConstantConstant	コンスタントカレント、		
•	•	DFTB	DFID_SIM COnstantCurrent	STM トポグラフィー像			
			DFTB_STS		トンネル電流分光	量子力学的 SPM 像シミュレータ	
			DFTB_AFM		周波数シフト AFM 像:		
			DFTB_KPFM		ケルビンプローブ力顕微鏡 像:		